User:Etchevers/Notebook/Conference notes/2009/07/06: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
(Autocreate 2009/07/06 Entry for User:Etchevers/Notebook/Conference_notes)
 
No edit summary
Line 7: Line 7:
<!-- ##### DO NOT edit above this line unless you know what you are doing. ##### -->
<!-- ##### DO NOT edit above this line unless you know what you are doing. ##### -->


==Notes for (enter conference or seminar) ==
==Notes for Seckel syndrome presentation and ATR DNA repair pathway seminar==


* Insert content here...
Marjolaine Willems en M2 chez Valerie, chef de clinique après – séminaire de lundi 6 juillet 2009


Voie ATR – syndrome de Seckel. PHRC 2009.
Repair mechanism of DNA damage eg stalled replication forks, UV, etc. ATR more in S-phase during stagnation of replication fork: ATRIP+RAD17+RFC2-5, recruit TOPBP1, kinase activity, but ATM for other types of damage.
CHK1 blocks CDC25A and therefore its activation of CDK1 and Cyclin B, stop cell cycle to repair DNA. ATR acts in the Fanconi pathway.
700 substrates phosphorylated by ATM or ATR. Most ATR targets are also ATM targets, ionizing radiation damage for this test. Seckel syndrome mutations in ATR (?) – inhibitor of DNA polymerase can find fragile sites on chromosome b/c most difficult to replicate.
Detect ATR pathway defects via lack of degradation of CDC25A (regulating entry into mitosis) even after UV treatment, or lack of checkpoint G2/M . Cf. Alderton et al., 2004 for other pathway anomalies in Seckel syndrome even w/o ATR mutations themselves.
Microcephaly vera = -3 to -13SD head with -3SD body growth, lack of neuronal migration. But no pb immunitaire or more cancer or sensitivity to ionizing radiation. MCPH1 is in the ATR pathway.
Centrosomal proteins interacting with gamma-tubulin: microcephalin, pericentrin Nat Genet 2009 Griffith et al., and Rauch et al., 2008 Science. Phenotypes a bit different: functional and morph problems like ATR deficiency, but Rauch et al., anomalies of mitoses in syndrome “MOPH-II” – greater growth defect, major radiological defects, cutis marmorata vascular dysplalis, hyper- and hypopigmented skin lesions, and some CV anomalies and vascular brain problems (aneurysm), but no mental retardation and evolving facial dysmorphy rather than the bird-like face in Seckel syndrome (large, beak-like nose, large incisors). Pb in chromosomal segregation like in centrosomal problems. ATR pathway is less cellularity as an effect, but link between them is now clearer: Tibelius et al., 2009 – MCPH1 recruits pericentrin to centrosome.
Sequencing of PCNT in compatible patients with Seckel or MOPD-II, with 16 families, only 3 non consanguineous, and 8 MOPD-II, 3 non consanguineous. Found 13 mutations all over pericentrin. Arnold asked for what were the diagnostic criteria – Marjolaine answers “diagnosis by a geneticist” – Size >1m10 adult, MR, no severe skeletal defects. Looking back at the pericentrin-mutated patients, facial dysmorphy is present and similar in both groups. Large forehead but not necessarily “fuyant”, nose = hypoplasia nasal alae. Growth retardation and mental retardation or psychomotor is progressive. Bone pbs – variable and less severe in Seckel diagnosed patients – short top of femur, but pelvic pbs in both syndromes. “Coxa vara”. Similar lower leg profiles. Clinodactyly, delayed bone growth.  Some endocrine problems, obesity in a few, others – microdontia as opposed to the large incisors; ORL problems sometimes as well. Skin hyperpigmentation/hypo – confusion between two syndromes, but these should orient to MOPD-II and pericentrin.
Two patients have liver problems going from cholestasis, duct proliferation to cirrhosis. Rauch and Valerie both think that PCNT accounts for all MOPD-II with genetic homogeneity. However, phenotypically variable in particular for height, and it’s evolving over time. Seckel is both clinically and genetically heterogeneous.
Asked for PHRC to study of all similar Seckel/MOPD-II patients. Will look for additional genes in Seckel as they progress. (cf. e-mail to Valerie in March 2008).
ATR is hypomorph mutations – acquired mutations in some cancers, but complete KO is lethal.
A few Seckel cases have osteosarcoma and/or leukemia. KO of pericentrin, asked Alexandra? Not known.
Obesity and liver problems – and pancreatic insulinoresistance cf cohort J Hall.
Pigmentation problems are evolutive as well, not congenital.
Chr 18 locus paper maybe in fact a MOPD-II patient considering clinical signs – pericentrin perhaps still compatible. Thinks chr 14 locus is badly positioned. What fraction of Seckel not linked to SKL1 or -4? (ATR/PCTN) checked for other effectors of ATR – more than half of them are not – and have not checked more than a few candidate genes. Many of these are still consanguineous. What other genes will test? MW says better to get more families, better clinical homogeneity rather than candidate gene approach.
Tania asks if placental problems. Not known.
Phenotype-genotype correlation for the two with liver cholestasis, asked Yves? Not sure.
*'''[[User:Etchevers|Heather]] 05:42, 8 July 2009 (EDT)''':


<!-- ##### DO NOT edit below this line unless you know what you are doing. ##### -->
<!-- ##### DO NOT edit below this line unless you know what you are doing. ##### -->

Revision as of 02:42, 8 July 2009

Conference and seminar notes <html><img src="/images/9/94/Report.png" border="0" /></html> Main project page
<html><img src="/images/c/c3/Resultset_previous.png" border="0" /></html>Previous entry<html>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</html>Next entry<html><img src="/images/5/5c/Resultset_next.png" border="0" /></html>

Notes for Seckel syndrome presentation and ATR DNA repair pathway seminar

Marjolaine Willems en M2 chez Valerie, chef de clinique après – séminaire de lundi 6 juillet 2009

Voie ATR – syndrome de Seckel. PHRC 2009.

Repair mechanism of DNA damage eg stalled replication forks, UV, etc. ATR more in S-phase during stagnation of replication fork: ATRIP+RAD17+RFC2-5, recruit TOPBP1, kinase activity, but ATM for other types of damage.

CHK1 blocks CDC25A and therefore its activation of CDK1 and Cyclin B, stop cell cycle to repair DNA. ATR acts in the Fanconi pathway.

700 substrates phosphorylated by ATM or ATR. Most ATR targets are also ATM targets, ionizing radiation damage for this test. Seckel syndrome mutations in ATR (?) – inhibitor of DNA polymerase can find fragile sites on chromosome b/c most difficult to replicate.

Detect ATR pathway defects via lack of degradation of CDC25A (regulating entry into mitosis) even after UV treatment, or lack of checkpoint G2/M . Cf. Alderton et al., 2004 for other pathway anomalies in Seckel syndrome even w/o ATR mutations themselves.

Microcephaly vera = -3 to -13SD head with -3SD body growth, lack of neuronal migration. But no pb immunitaire or more cancer or sensitivity to ionizing radiation. MCPH1 is in the ATR pathway.

Centrosomal proteins interacting with gamma-tubulin: microcephalin, pericentrin Nat Genet 2009 Griffith et al., and Rauch et al., 2008 Science. Phenotypes a bit different: functional and morph problems like ATR deficiency, but Rauch et al., anomalies of mitoses in syndrome “MOPH-II” – greater growth defect, major radiological defects, cutis marmorata vascular dysplalis, hyper- and hypopigmented skin lesions, and some CV anomalies and vascular brain problems (aneurysm), but no mental retardation and evolving facial dysmorphy rather than the bird-like face in Seckel syndrome (large, beak-like nose, large incisors). Pb in chromosomal segregation like in centrosomal problems. ATR pathway is less cellularity as an effect, but link between them is now clearer: Tibelius et al., 2009 – MCPH1 recruits pericentrin to centrosome.

Sequencing of PCNT in compatible patients with Seckel or MOPD-II, with 16 families, only 3 non consanguineous, and 8 MOPD-II, 3 non consanguineous. Found 13 mutations all over pericentrin. Arnold asked for what were the diagnostic criteria – Marjolaine answers “diagnosis by a geneticist” – Size >1m10 adult, MR, no severe skeletal defects. Looking back at the pericentrin-mutated patients, facial dysmorphy is present and similar in both groups. Large forehead but not necessarily “fuyant”, nose = hypoplasia nasal alae. Growth retardation and mental retardation or psychomotor is progressive. Bone pbs – variable and less severe in Seckel diagnosed patients – short top of femur, but pelvic pbs in both syndromes. “Coxa vara”. Similar lower leg profiles. Clinodactyly, delayed bone growth. Some endocrine problems, obesity in a few, others – microdontia as opposed to the large incisors; ORL problems sometimes as well. Skin hyperpigmentation/hypo – confusion between two syndromes, but these should orient to MOPD-II and pericentrin.

Two patients have liver problems going from cholestasis, duct proliferation to cirrhosis. Rauch and Valerie both think that PCNT accounts for all MOPD-II with genetic homogeneity. However, phenotypically variable in particular for height, and it’s evolving over time. Seckel is both clinically and genetically heterogeneous.

Asked for PHRC to study of all similar Seckel/MOPD-II patients. Will look for additional genes in Seckel as they progress. (cf. e-mail to Valerie in March 2008).

ATR is hypomorph mutations – acquired mutations in some cancers, but complete KO is lethal.

A few Seckel cases have osteosarcoma and/or leukemia. KO of pericentrin, asked Alexandra? Not known.

Obesity and liver problems – and pancreatic insulinoresistance cf cohort J Hall. Pigmentation problems are evolutive as well, not congenital.

Chr 18 locus paper maybe in fact a MOPD-II patient considering clinical signs – pericentrin perhaps still compatible. Thinks chr 14 locus is badly positioned. What fraction of Seckel not linked to SKL1 or -4? (ATR/PCTN) checked for other effectors of ATR – more than half of them are not – and have not checked more than a few candidate genes. Many of these are still consanguineous. What other genes will test? MW says better to get more families, better clinical homogeneity rather than candidate gene approach.

Tania asks if placental problems. Not known.

Phenotype-genotype correlation for the two with liver cholestasis, asked Yves? Not sure.