User:Jaroslaw Karcz/Modelling Sandbox: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
 
(13 intermediate revisions by the same user not shown)
Line 1: Line 1:
==THE KEY==
<math>\nabla \times \nabla \times v = ...</math><br><br>
<math>\nabla \times v = \epsilon_{spq}v_{q,p}</math><br>
<math>\nabla \times \nabla \times v = \epsilon_{irs}(\epsilon_{spq}v_{q,p})_{,r}</math><br><br>
<math>\Rightarrow \epsilon_{irs} \epsilon_{spq} (v_{q,p})_{r}</math><br>
<math>\Rightarrow \epsilon_{sir}\epsilon_{spq}v_{q,pr}</math>....cyclic permutation<br>
<math>\Rightarrow (\delta_{ip}\delta_{rq} -  \delta_{iq}\delta_{rp})v_{q,pr}</math><br>
<math>\Rightarrow \delta_{ip}\delta_{rq}v_{q,pr} -  \delta_{iq}\delta_{rp}v_{q,pr}</math><br>
<math>\Rightarrow \delta_{ip}v_{r,pr} -  \delta_{iq}v_{q,rr}</math><br>
<math>\Rightarrow v_{r,ir} - v_{i,rr}</math><br>
<math>\Rightarrow v_{r,ri} - v_{i,rr} ......since.....  v_{r,ri} =  v_{r,ir}</math> ...continuous function <br>
====Convert to vector notation====
<math>\Rightarrow\nabla (\nabla \cdot  v) - \nabla^{2}v</math><br>
==Model Development==
==Model Development==
The process of modelling consists of a number of layers; the following is a description of the modelling workflow:
The process of modelling consists of a number of layers; the following is a description of the modelling workflow:
Line 14: Line 31:


<!-- Nav Bar -->
<!-- Nav Bar -->
<hr class=divider3>
<hr class=divider1>
<div>
<div>
{|class="white" align="left" width="720px" cellpadding="8px"
{|class="white" align="left" width="100%" cellpadding="8px"
|- align="center"
|- align="center"
| {{Click || image=Implogo.gif‎  | link=IGEM:IMPERIAL/2007 | width=75px | height=35px }}
| {{Click || image=Implogo.gif‎  | link=IGEM:IMPERIAL/2007 | width=100px | height=50px }}
| {{Click || image=IGEM07ICAmbulance.png‎  | link=IGEM:IMPERIAL/2007/Biofilm Detector | width=40px | height=40px }}
| {{Click || image=IGEM07ICAmbulance.png‎  | link=IGEM:IMPERIAL/2007/Biofilm Detector | width=50px | height=50px }}
| {{Click || image=Labs grey.png | link=IGEM:IMPERIAL/2007/Dry Lab| width=40px | height=40px }}
| {{Click || image=Labs grey.png | link=IGEM:IMPERIAL/2007/Dry Lab| width=40px | height=40px }}
|- align="center"
|- align="center"
Line 28: Line 45:
</div>
</div>
<br clear="all">
<br clear="all">
<hr class=divider3>
<hr class=divider1>


<br clear="all">
<br clear="all">
<h2><html>
 
 
 
<!-- Nav Bar -->
<hr class=divider2>
<div>
{|class="blue" align="left" width="720px" cellpadding="0px"
|- align="center"
| {{Click || image=Implogo.gif‎  | link=IGEM:IMPERIAL/2007 | width=75px | height=35px }}
| {{Click || image=Labs grey.png | link=IGEM:IMPERIAL/2007/Dry Lab| width=40px | height=40px }}
| {{Click || image=Courses violet.png | link=IGEM:IMPERIAL/2007/Modelling| width=40px | height=40px }}
|- align="center"
| [[IGEM:IMPERIAL/2007|<font face="Arial" size=3 style="color:#000099">'''Home'''</font>]]
| [[IGEM:IMPERIAL/2007/Dry Lab|<font face="Arial" size=3 style="color:#000099">'''Dry Lab'''</font>]]
| [[IGEM:IMPERIAL/2007/Resources|<font face="Arial" size=3 style="color:#000099">'''Modelling'''</font>]]
|}
</div>
<br clear="all">
<hr class=divider2>
 
 
 
<div class="noprint" style="padding: 10px; color: #ffffff; background-color: #EEEEFF; width: 660px; align: center">
<center>
[[Part:BBa_F2620 |Part Main Page]]
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
[[Part:BBa_F2620:Transfer Function |Transfer Function]] &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
[[Part:BBa_F2620:Specificity|Specificity]] &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
[[Part:BBa_F2620:Response time |Response time]] &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
[[Part:BBa_F2620:Stability |Stability]] &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
[[Part:BBa_F2620:Experience |Add Data]] &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
</center>
</div><br>
 
 
==Introduction==
The real world is dominated by complexity, especially biological systems
<br>
Mathematical modelling and computer simulations provide a means of understanding the innate funtioning of system - dynamics, and to arrive at well-founded predictions about their future development and the effect of interactions with the environment.
So what is a model? A model is an abstract representation of objects and processes that explain the features/nature of these objects or processes. We present the model of our construct, as a system of differential equations to describe the dynamics of that network.
 
== Model Parameters ==
{| class="wikitable" border="1" cellspacing="0" cellpadding="2" style="text-align:left; margin: 1em 1em 1em 0; background: #f9f9f9; border: 1px #aaa solid; border-collapse: collapse;"
! Parameter
! Value                     
! Description
! Comment (literature, derived?)
|-
| k<sub>1</sub>
| x [units]
| max. transcription rate of constitutive promoter (pTET)
| Estimate
|-
| k<sub>2</sub>
|
|
|
|-
| k<sub>3</sub>
|
|
|
|-
| k<sub>4</sub>
|
|
|
|-
| k<sub>5</sub>
|
|
|
|-
| k<sub>6</sub>
| x [units]
|
|
|-
| <math> \delta_{GFP} </math>
| 0.029 hrs <sup>-1</sup>
| degradation rate of GFP
| Literature <font color = red> ~~ give reference </font>
|}
<br>
 
==Tabs==

Latest revision as of 19:41, 6 December 2007

THE KEY

[math]\displaystyle{ \nabla \times \nabla \times v = ... }[/math]

[math]\displaystyle{ \nabla \times v = \epsilon_{spq}v_{q,p} }[/math]
[math]\displaystyle{ \nabla \times \nabla \times v = \epsilon_{irs}(\epsilon_{spq}v_{q,p})_{,r} }[/math]

[math]\displaystyle{ \Rightarrow \epsilon_{irs} \epsilon_{spq} (v_{q,p})_{r} }[/math]
[math]\displaystyle{ \Rightarrow \epsilon_{sir}\epsilon_{spq}v_{q,pr} }[/math]....cyclic permutation
[math]\displaystyle{ \Rightarrow (\delta_{ip}\delta_{rq} - \delta_{iq}\delta_{rp})v_{q,pr} }[/math]
[math]\displaystyle{ \Rightarrow \delta_{ip}\delta_{rq}v_{q,pr} - \delta_{iq}\delta_{rp}v_{q,pr} }[/math]
[math]\displaystyle{ \Rightarrow \delta_{ip}v_{r,pr} - \delta_{iq}v_{q,rr} }[/math]
[math]\displaystyle{ \Rightarrow v_{r,ir} - v_{i,rr} }[/math]
[math]\displaystyle{ \Rightarrow v_{r,ri} - v_{i,rr} ......since..... v_{r,ri} = v_{r,ir} }[/math] ...continuous function

Convert to vector notation

[math]\displaystyle{ \Rightarrow\nabla (\nabla \cdot v) - \nabla^{2}v }[/math]

Model Development

The process of modelling consists of a number of layers; the following is a description of the modelling workflow:

  1. Definition of the problem
  2. Verification of information available
  3. Selection of model structure
  4. Establishing a simple model
  5. Sensitivity analysis
  6. Experimental tests of the model predictions
  7. Stating the agreements and divergences between experimental and modelling results, including any emergent behaviour
  8. Iterative refinement of model


[math]\displaystyle{ f_{obj}(k) = \sum_{i=1}^q (f_{obs}(i) - f_{per}(i,k))^2 }[/math]










Part Main Page        Transfer Function        Specificity        Response time        Stability        Add Data       



Introduction

The real world is dominated by complexity, especially biological systems
Mathematical modelling and computer simulations provide a means of understanding the innate funtioning of system - dynamics, and to arrive at well-founded predictions about their future development and the effect of interactions with the environment. So what is a model? A model is an abstract representation of objects and processes that explain the features/nature of these objects or processes. We present the model of our construct, as a system of differential equations to describe the dynamics of that network.

Model Parameters

Parameter Value Description Comment (literature, derived?)
k1 x [units] max. transcription rate of constitutive promoter (pTET) Estimate
k2
k3
k4
k5
k6 x [units]
[math]\displaystyle{ \delta_{GFP} }[/math] 0.029 hrs -1 degradation rate of GFP Literature ~~ give reference


Tabs