User:Javier Vinals Camallonga/Notebook/Javier Vinals notebook/2013/09/04

From OpenWetWare
Jump to navigationJump to search
Project name <html><img src="/images/9/94/Report.png" border="0" /></html> Main project page
<html><img src="/images/c/c3/Resultset_previous.png" border="0" /></html>Previous entry<html>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</html>Next entry<html><img src="/images/5/5c/Resultset_next.png" border="0" /></html>

Entry title

  • Insert content here...

For today's laboratory, we analyzed the data obtained from yesterday, and then determined if there were any outliers, the standard deviation and the confidence interval 90% and 95%.

Calibration Curve and Group work As a large group, determine what wavelengths you want to use for your adenosine and inosine calibration curves (A vs c). Choose two people (one for each molecule) to compile your A(λ) and concentration data from each group. Do a least squares fit to the data and determine the slope of the line (remember the intercept should be zero --- with a concentration of 0 there should be no absorbance). This data, once compiled should be shared with all of the group members (via dropbox). Determine the standard deviation for your data points. Determine the confidence interval for 90% and 95% confidence. Determine if any data can be ruled out using a Q-test. Unknown Groups should exchange unknowns and try to determine the concentration of these unknowns from the calibration curves. In a week, I want you to revisit this data and propagate the error from the calibration curve to your concentration calculation. After making your calculation, find out from the group, whose unknown you are using, what the calculation of their samples should be.


Data Analysis

For the experiment, we combined the class data of Adenosine and Inosine, and then used this values to find the standard deviation, the confidence interval of 90% and 95%, and used grubb's test to find any outliers

"Figure 1"