User:Javier Vinals Camallonga/Notebook/Javier Vinals notebook/2014/04/08: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
(Autocreate 2014/04/08 Entry for User:Javier_Vinals_Camallonga/Notebook/Javier_Vinals_notebook)
 
(fix raw html notebook nav)
 
(One intermediate revision by one other user not shown)
Line 2: Line 2:
|-
|-
|style="background-color: #EEE"|[[Image:owwnotebook_icon.png|128px]]<span style="font-size:22px;"> Project name</span>
|style="background-color: #EEE"|[[Image:owwnotebook_icon.png|128px]]<span style="font-size:22px;"> Project name</span>
|style="background-color: #F2F2F2" align="center"|<html><img src="/images/9/94/Report.png" border="0" /></html> [[{{#sub:{{FULLPAGENAME}}|0|-11}}|Main project page]]<br />{{#if:{{#lnpreventry:{{FULLPAGENAME}}}}|<html><img src="/images/c/c3/Resultset_previous.png" border="0" /></html>[[{{#lnpreventry:{{FULLPAGENAME}}}}{{!}}Previous entry]]<html>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</html>}}{{#if:{{#lnnextentry:{{FULLPAGENAME}}}}|[[{{#lnnextentry:{{FULLPAGENAME}}}}{{!}}Next entry]]<html><img src="/images/5/5c/Resultset_next.png" border="0" /></html>}}
|style="background-color: #F2F2F2" align="center"|[[File:Report.png|frameless|link={{#sub:{{FULLPAGENAME}}|0|-11}}]][[{{#sub:{{FULLPAGENAME}}|0|-11}}|Main project page]]<br />{{#if:{{#lnpreventry:{{FULLPAGENAME}}}}|[[File:Resultset_previous.png|frameless|link={{#lnpreventry:{{FULLPAGENAME}}}}]][[{{#lnpreventry:{{FULLPAGENAME}}}}{{!}}Previous entry]]&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;}}{{#if:{{#lnnextentry:{{FULLPAGENAME}}}}|[[{{#lnnextentry:{{FULLPAGENAME}}}}{{!}}Next entry]][[File:Resultset_next.png|frameless|link={{#lnnextentry:{{FULLPAGENAME}}}}]]}}
|-
|-
| colspan="2"|
| colspan="2"|
Line 10: Line 10:


==Objective==
==Objective==
Today we'll be determining the molar absorptivities of two different molecules, [http://en.wikipedia.org/wiki/Adenosine adenosine] and [http://en.wikipedia.org/wiki/Inosine inosine]. The data that we generate today will be important when we study [http://en.wikipedia.org/wiki/Adenosine_deaminase adenosine deaminase] (ADA), which converts adenosine to inosine. The difference between these two molecules is that adenosine contains a primary amine whereas inosine contains a carboxy group. Overexpression of this protein causes anemia in humans. A shortage of this protein can lead to severe immuno-defficiency.  
* Take conductivity measurements on room temperature solutions from 3/26/14.
* Run UV-Vis and AA on solutions at 4°C from 3/26/14.
 
==Procedure==
 
===Conductivity Measurement of Pure Variables at Room Temperature===
 
[[Image:4.8.conductivity.room.png|800px|]]
 
===Atomic Absorption Preparation===
 
'''Creating the Gold Stock Solutions'''
# Add 50 μL of HAuCl<sub>4</sub>·3H<sub>2</sub>O and 4950 μL of distilled water to a Falcon tube, for a final concentration of 10 μg/mL Au.
# Add 100 μL of HAuCl<sub>4</sub>·3H<sub>2</sub>O and 4900 μL of distilled water to a Falcon tube, for a final concentration of 20 μg/mL Au.
# Add 150 μL of HAuCl<sub>4</sub>·3H<sub>2</sub>O and 4850 μL of distilled water to a Falcon tube, for a final concentration of 30 μg/mL Au.
# Add 200 μL of HAuCl<sub>4</sub>·3H<sub>2</sub>O and 4800 μL of distilled water to a Falcon tube, for a final concentration of 40 μg/mL Au.
# Add 250 μL of HAuCl<sub>4</sub>·3H<sub>2</sub>O and 4750 μL of distilled water to a Falcon tube, for a final concentration of 50 μg/mL Au.
 
 
 
'''Atomic Absorption Samples'''
 
Solutions with the following Au:lysozyme ratio at 4°C were run on the AA:
* 30:1 lysozyme-AuNP with 0.03 M MgCl<sub>2</sub>, CaCl<sub>2</sub>, NaCl, KCl, MES, citric acid (0.0002316 M 2,2 bipyridine)
* 30:1 lysozyme-AuNP with 0.06 M MgCl<sub>2</sub>, CaCl<sub>2</sub>, NaCl, KCl, MES, citric acid (0.0004544 M 2,2 bipyridine)
* 30:1 lysozyme-AuNP with 0.09 M MgCl<sub>2</sub>, CaCl<sub>2</sub>, NaCl, KCl, MES, citric acid (0.0006772 M 2,2 bipyridine)
 
==Figures==
 
===Atomic Absorption===
[[Image:4.8.aa.all.png|700px|]]
 
[[Image:4.8.2.2.bipy.png|700px|]]
 
 
===UV-Vis===
 
*The following UV-Vis are for 30:1 lysozyme-AuNP samples made on March 26, 2014. The samples were synthesized using the method we've been using all year and variables were added added synthesis. The samples were then cooled to 4°C to see the effect on fiber formation.  
* Note that all for all samples with the exception of the 2,2 bipyridine samples caused almost all AuNPs to fall out of solution.
[[Image:Screen_Shot_2014-04-09_at_1.29.09_PM.png]]
[[Image:Screen_Shot_2014-04-09_at_1.29.34_PM.png]]
[[Image:Screen_Shot_2014-04-09_at_1.29.45_PM.png]]
*Note that due to the measure of accuracy of the equipment used, the percentages that are close in value might not different enough to be considered significant. This is because the values used to calculate these percentages differed by one decimal point ex: .0005 and .0004 
[[Image:Screen_Shot_2014-04-09_at_1.53.20_PM.png]]


Adenosine and inosine have different absorption spectra. We will be observing changes in UV-Vis spectra to determine changes in concentration of both adenosine and inosine. In order to do this, we will need to know the molar absorptivity (ε) of both of these molecules. Just as each molecule has a characteristic absorption at each wavelength, this (per-wavelength) absorption can be quantified by a molar absorptivity. Or ... for a given concentration a molecule will absorb a very specific amount of light at a precise wavelength. A molecule doesn't have just one molar absorptivity; there is a molar absorptivity to describe each wavelength in a molecular absorbance spectrum.





Latest revision as of 23:53, 26 September 2017

Project name Main project page
Previous entry      Next entry

Entry title

  • Insert content here...

Objective

  • Take conductivity measurements on room temperature solutions from 3/26/14.
  • Run UV-Vis and AA on solutions at 4°C from 3/26/14.

Procedure

Conductivity Measurement of Pure Variables at Room Temperature

Atomic Absorption Preparation

Creating the Gold Stock Solutions

  1. Add 50 μL of HAuCl4·3H2O and 4950 μL of distilled water to a Falcon tube, for a final concentration of 10 μg/mL Au.
  2. Add 100 μL of HAuCl4·3H2O and 4900 μL of distilled water to a Falcon tube, for a final concentration of 20 μg/mL Au.
  3. Add 150 μL of HAuCl4·3H2O and 4850 μL of distilled water to a Falcon tube, for a final concentration of 30 μg/mL Au.
  4. Add 200 μL of HAuCl4·3H2O and 4800 μL of distilled water to a Falcon tube, for a final concentration of 40 μg/mL Au.
  5. Add 250 μL of HAuCl4·3H2O and 4750 μL of distilled water to a Falcon tube, for a final concentration of 50 μg/mL Au.


Atomic Absorption Samples

Solutions with the following Au:lysozyme ratio at 4°C were run on the AA:

  • 30:1 lysozyme-AuNP with 0.03 M MgCl2, CaCl2, NaCl, KCl, MES, citric acid (0.0002316 M 2,2 bipyridine)
  • 30:1 lysozyme-AuNP with 0.06 M MgCl2, CaCl2, NaCl, KCl, MES, citric acid (0.0004544 M 2,2 bipyridine)
  • 30:1 lysozyme-AuNP with 0.09 M MgCl2, CaCl2, NaCl, KCl, MES, citric acid (0.0006772 M 2,2 bipyridine)

Figures

Atomic Absorption


UV-Vis

  • The following UV-Vis are for 30:1 lysozyme-AuNP samples made on March 26, 2014. The samples were synthesized using the method we've been using all year and variables were added added synthesis. The samples were then cooled to 4°C to see the effect on fiber formation.
  • Note that all for all samples with the exception of the 2,2 bipyridine samples caused almost all AuNPs to fall out of solution.

  • Note that due to the measure of accuracy of the equipment used, the percentages that are close in value might not different enough to be considered significant. This is because the values used to calculate these percentages differed by one decimal point ex: .0005 and .0004