User:Moira M. Esson/Notebook/CHEM-581/2013/02/15

From OpenWetWare
Jump to navigationJump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
Project name <html><img src="/images/9/94/Report.png" border="0" /></html> Main project page
<html><img src="/images/c/c3/Resultset_previous.png" border="0" /></html>Previous entry<html>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</html>Next entry<html><img src="/images/5/5c/Resultset_next.png" border="0" /></html>

Objectives

  1. Prepare PVA-clay microspheres.
  2. Run diffusion tests on hydrogels prepared on 2013/01/30 with Rhodamine 6G dye added on 2013/02/08.


Microsphere Preparation

  • Due to the relatively unsuccessful preparation of PVA/clay microspheres(the prepared spheres were either larger than a micrometer or did not appear at all), a new method was used for the preparation of PVA/clay microspheres.

General Protocol:

  1. The desired ratio of PVA and clay was measured out. The total mass was ~1g.
  2. The PVA/clay was placed in a 50mL beaker with a magnetic stir bar. 25mL distilled H2O were added to the beaker and the solution was heated to ~100°C and allowed to stir until complete dissolution of PVA/clay.
  3. The magnetic stir bar was removed and 25mL of mineral oil was added to the beaker.
  4. The contents of the beaker were poured into a blender to homogenize the solution and create an emulsion of the aqueous and organic layer in the attempt to create a suspension of microspheres.
  5. The blender was turned on a low setting for 7 minutes.
  6. The contents of the blender were poured into a beaker and the appropriate amount of DMSO/Rhodamine 6G solution was added.
  7. The microsphere solution was placed in a freezer at -20°C for 24 hours and then removed and allowed to thaw for 24 hours.
  8. Repeat this freeze-thaw cycle three times.


This procedure was adapted from [1]
Preparation of Microspheres:

  • New calculations for the amount of DMSO/Rhodamine 6G to be added:

For a 90:10 ratio:

 (25mL)(1μM)/(92μM)=0.272mL

For a 50:50 ratio:

 (25mL)(1μM)/(165μM)=0.152mL
  • Information about prepared microspheres:
Prepared Clay-PVA(MW 146,000-186,000) microspheres ' ' ' '
Composition of hydrogel(ratio of PVA to clay) Amount of PVA added(g) Amount of clay added(g) Concencentration of DMSO/dye stock solution added(μM) Amount of DMSO/dye added(mL)
90:10 PVA:110% NaMT 0.9099 0.1045 92 0.272
50:50 PVA:110% NaMT 0.5076 0.4913 165 0.152
90:10 PVA:110% Lamponite 0.9010 0.0998 92 0.272


Observations:

  • After the addition of dye/DMSO to the 110% Lamponite, the dye appeared to stick to very small spheres at the bottom of the beaker. Bright pink spheres immediately formed. This did not occur for the samples containing 110% NaMT.


Fluorescence

  • The six hydrogel samples that were allowed to soak in Rhodamine 6G were tested for the rate of diffusion of Rhodamine 6G from the samples.

General Protocol:

  1. Excess Rhodamine 6G sample still present in the beaker was removed.
  2. Hydrogel samples were removed from the beakers, pat dry with a paper towel, and placed in a new, clean beaker.
  3. 25mL distilled H2O were added to each beaker sample.
  4. A timer was started, and every 15 minutes, a sample of distilled H2O was removed from the beaker and placed in an unfrosted cuvette.
  5. The sample was discarded into a waste beaker.
  6. This process was repeated for 2 hours.


Spectra:
Observations:

  • Each of the samples had a very fast diffusion rate. If the spectra are viewed additively for each hydrogel sample, a significant amount of dye leaked out of the hydrogel sample in only 2 hours, in comparison to the hydrogels which remained in distilled H2O for one week and had minimal dye diffusion. This indicates that the dye must be added prior to the freeze-thaw crosslinking method.
  • Due to the fact that the dye did not immediately, completely diffuse out, the crosslinking of PVA/clay hydrogels slowed the diffusion rate of the dye.
  • Comparing the 50:50 ratio of PVA:clay and the 90:10 ratio, the hydrogels with 50:50 ratio had more dye leak out of the hydrogel than the 90:10 ratio. Perhaps indicates a more effective pressure stimuli.
  • In the future, when performing the diffusion tests, after taking a sample every fifteen minutes, the sample will be readded to the test beaker rather than discarded.