User:Nkuldell/mtDNA pt3: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
No edit summary
Line 8: Line 8:
===Part 1: [http://db.yeastgenome.org/cgi-bin/locus.pl?locus=rnt1 Rnt1p]===
===Part 1: [http://db.yeastgenome.org/cgi-bin/locus.pl?locus=rnt1 Rnt1p]===
====Gen'l info about RNases====
====Gen'l info about RNases====
From [http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VS6-4MWGYGP-3&_user=501045&_coverDate=02%2F28%2F2007&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000022659&_version=1&_urlVersion=0&_userid=501045&md5=2d8beed29b9892d6d940546354359f5a
Current Opinion in Structural Biology 2007 17:77] by James M Berger and Christoph W Müller "A particularly interesting family of ribonucleases that specifically cleave double-stranded RNA serves as the topic of the review by MacRae and Doudna. The RNase III group of RNA-processing enzymes currently attracts broad attention, because two family members, Dicer and Drosha, are responsible for processing RNA transcripts into microRNA (miRNAs) and short interfering RNAs (siRNAs). RNase III proteins are often multifunctional or multisubunit assemblies, and can be classified based on domain composition. Class I RNase III enzymes function as dimers, in which the RNase domains also act as dimerization domains, whereas class II and III family members are monomeric, forming a functional RNase from the internal fusion of two class I RNase III monomers. Comparing RNase III enzymes across a wide range of species leads the authors to conclude that RNase III enzymes use accessory domains as determinants of substrate specificity. For Dicer and Drosha, these accessory domains are the PAZ domain and the additional DGCR8 protein, respectively. Substrate specificity and catalytic domains are spatially separated and, in some instances, it appears that the RNase can precisely measure the distance between the RNA recognition and cleavage sites by using an internal scaffold element that functions as a molecular ruler. Given the number of different types of small RNAs and their importance in gene regulation and other cellular processes, there are sure to be many fundamental insights that will arise from the continued study of this essential protein family."
====S. cerevisiae RNAases====
====S. cerevisiae RNAases====
====Rnt1p====
====Rnt1p====

Revision as of 13:52, 13 June 2007

Overall goal

Make a tool to regulate gene expression of any mt gene. Tool would have two-parts and be nuclear-encoded.

  • Part 1: Rnt1p (RNaseIII enzyme), targetted to mt using sig sequence from HEM1 or COX4.
  • Part 2: Guide RNAs, targetted to mt using lysing-tRNA-CUU (tRK1) import system.

Foundational info: Summary of natural transcriptional control elements Biswas in PNAS 1990 87:9338 and Biswas and Getz in J Biol Chem 1990 265:19053
Foundational info: works for degradation of mRNAs in S. cerevisiae nucleus Lamontagne and Elela in PLoS One 2007 5:e472

Part 1: Rnt1p

Gen'l info about RNases

From [http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VS6-4MWGYGP-3&_user=501045&_coverDate=02%2F28%2F2007&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000022659&_version=1&_urlVersion=0&_userid=501045&md5=2d8beed29b9892d6d940546354359f5a Current Opinion in Structural Biology 2007 17:77] by James M Berger and Christoph W Müller "A particularly interesting family of ribonucleases that specifically cleave double-stranded RNA serves as the topic of the review by MacRae and Doudna. The RNase III group of RNA-processing enzymes currently attracts broad attention, because two family members, Dicer and Drosha, are responsible for processing RNA transcripts into microRNA (miRNAs) and short interfering RNAs (siRNAs). RNase III proteins are often multifunctional or multisubunit assemblies, and can be classified based on domain composition. Class I RNase III enzymes function as dimers, in which the RNase domains also act as dimerization domains, whereas class II and III family members are monomeric, forming a functional RNase from the internal fusion of two class I RNase III monomers. Comparing RNase III enzymes across a wide range of species leads the authors to conclude that RNase III enzymes use accessory domains as determinants of substrate specificity. For Dicer and Drosha, these accessory domains are the PAZ domain and the additional DGCR8 protein, respectively. Substrate specificity and catalytic domains are spatially separated and, in some instances, it appears that the RNase can precisely measure the distance between the RNA recognition and cleavage sites by using an internal scaffold element that functions as a molecular ruler. Given the number of different types of small RNAs and their importance in gene regulation and other cellular processes, there are sure to be many fundamental insights that will arise from the continued study of this essential protein family."

S. cerevisiae RNAases

Rnt1p

Part 2: Guide RNAs

Structural requirements for guide RNAs

Cell components needed for moving guide RNA to mt

  • piggy back

Experimental checkpoints for regulated expression

Part 1: Rnt1p in mt

    1. add tag to gene to follow localization of protein product
    2. microarray induced/uninduced to look for effect of RNase in mt.

Applications for mt gene regulation, in the unlikely case that this system works