User:Noppadon Sathitsuksanoh: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
==Contact Info==
{{Tik}}
[[Image:tik.jpg]|thumb|left|Noppadon Sathitsuksanoh]]


*Noppadon Sathitsuksanoh
[[File:Tik1.jpg|150px|thumb|left|<center>Tik1</center>]]
*200 Seitz Hall
*Virginia Tech
*Blacksburg, VA 24061, USA
*[sathino@vt.edu]


<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Noppadon Sathitsuksanoh (Tik)
<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Ph.D. candidate
<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;200 Seitz Hall
<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Biological Systems Engineering Department
<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Virginia Tech
<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Blacksburg, VA 24061
<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[mailto:sathino@vt.edu sathino@vt.edu]




==Education==
<!--Include info about your educational background-->
* 2011, PhD, Virginia Tech
* 2006, MS, Auburn Univ.
* 2000, BS, Thammasat Univ.


Tik is a member of the [Biofuels Lab] at Virginia Tech.


*[[Tik:People|Lab Members]]
<br>
*[[Tik:Publications|Publications]]
*[[Tik:Research|Research Interests]]
*[[Tik:Personal|Pictures]]


*[[Tik:Contact tik| Contact]]
==Primary Research==
 
#Establishment and application of new genetic engineering tools and expression/secretion systems in ''Bacillus subtilis'', ''Geobacillus'' and ''Brevibacillus brevis''.
#Metabolism and metabolic engineering of ''Bacillus subtilis''.
#Enzyme Engineering by directed evolution: A novel powerful and highly efficient ''Bacillus subtilis'' platform for cellulase engineering and performance improvement towards natural cellulose substrate has been established.
#Construction of recombinant consolidated bioprocessing (CBP) microorganisms (e.g., ''Bacillus'', ''Geobacillus'' and yeast) for one-step production of biocommodities from renewable lignocellulosic materials.
#Synthetic biology and metabolic engineering for biofuel production from biomass.
#Microbiological resources and ''in situ'' biodegradation.
 
==Selected Publications==
#'''Zhang, X.-Z.''', Sathitsuksanoh, N.,Zhu, Z. and Zhang, Y.-H. P. (2011) One-step production of lactate from cellulose as sole carbon source without any other organic nutrient by recombinant cellulolytic ''Bacillus subtilis'', under review.
#Myung, S., '''Zhang, X.-Z.''', and Zhang, Y.-H. P. (2011) Ultra-stable phosphoglucose isomerase through immobilization of cellulosebinding module-tagged thermophilic enzyme on low-cost high-capacity cellulosic adsorbent, '''Biotechnology Progress''' In Press
#'''Zhang, X.-Z.''', and Zhang, Y.-H. P. (2011) Simple, fast and high-efficiency transformation system for directed evolution of cellulase in ''Bacillus subtilis'', '''Microbial Biotechnology''' 4, 98-105.
#'''Zhang, X.-Z.''', Zhang, Z., Zhu, Z., Sathitsuksanoh, N., Yang, Y., and Zhang, Y.-H. P. (2010) The non-cellulosomal family 48 cellobiohydrolase from ''Clostridium phytofermentans'' ISDg: heterologous expression, characterization, and processivity, '''Applied Microbiology and Biotechnology''' 86, 525-533.
#'''Zhang, X.-Z.''', and Zhang, Y.-H. P. (2010) One-step production of biocommodities from lignocellulosic biomass by recombinant cellulolytic ''Bacillus subtilis'': Opportunities and challenges, '''Engineering in Life Sciences''' 10(5):398-406.
#'''Zhang, X.-Z.''', Sathitsuksanoh, N., and Zhang, Y.-H. P. (2010) Glycoside hydrolase family 9 processive endoglucanase from ''Clostridium phytofermentans'': heterologous expression, characterization, and synergy with family 48 cellobiohydrolase, '''Bioresource Technology''' 101, 5534-5538.
#Liu, W., '''Zhang, X.-Z.''', Zhang, Z., and Zhang, Y.-H. P. (2010) Engineering of ''Clostridium phytofermentans'' endoglucanase Cel5A for improved thermostability, '''Appl. Environ. Microbiol.''' 76, 4914-4917.
#'''Zhang, X.-Z.''', Yan, X., Cui, Z. L., Hong, Q., and Li, S. P. (2006) ''mazF'', a novel counter-selectable marker for unmarked chromosomal manipulation in ''Bacillus subtilis'', '''Nucleic Acids Res''' 34, e71.
#'''Zhang, X.-Z.''', Cui, Z.-L., Hong, Q., and Li, S.-P. (2005) High-level expression and secretion of methyl parathion hydrolase in ''Bacillus subtilis'' WB800, '''Appl. Environ. Microbiol.''' 71, 4101-4103.
#Cui, Z.-L., '''Zhang, X.-Z.''', Zhang, Z.-H., and Li, S.-P. (2004) Construction and application of a promoter trapping vector with methyl parathion hydrolase gene ''mpd'' as the reporter, '''Biotechnology Letters''' 26, 1115-1118.

Revision as of 10:58, 9 February 2011

Home      Research      People      Publications      Curriculum Vitae      News      Contact     


Tik1


            Noppadon Sathitsuksanoh (Tik)
            Ph.D. candidate
            200 Seitz Hall
            Biological Systems Engineering Department
            Virginia Tech
            Blacksburg, VA 24061
            sathino@vt.edu




Primary Research

  1. Establishment and application of new genetic engineering tools and expression/secretion systems in Bacillus subtilis, Geobacillus and Brevibacillus brevis.
  2. Metabolism and metabolic engineering of Bacillus subtilis.
  3. Enzyme Engineering by directed evolution: A novel powerful and highly efficient Bacillus subtilis platform for cellulase engineering and performance improvement towards natural cellulose substrate has been established.
  4. Construction of recombinant consolidated bioprocessing (CBP) microorganisms (e.g., Bacillus, Geobacillus and yeast) for one-step production of biocommodities from renewable lignocellulosic materials.
  5. Synthetic biology and metabolic engineering for biofuel production from biomass.
  6. Microbiological resources and in situ biodegradation.

Selected Publications

  1. Zhang, X.-Z., Sathitsuksanoh, N.,Zhu, Z. and Zhang, Y.-H. P. (2011) One-step production of lactate from cellulose as sole carbon source without any other organic nutrient by recombinant cellulolytic Bacillus subtilis, under review.
  2. Myung, S., Zhang, X.-Z., and Zhang, Y.-H. P. (2011) Ultra-stable phosphoglucose isomerase through immobilization of cellulosebinding module-tagged thermophilic enzyme on low-cost high-capacity cellulosic adsorbent, Biotechnology Progress In Press
  3. Zhang, X.-Z., and Zhang, Y.-H. P. (2011) Simple, fast and high-efficiency transformation system for directed evolution of cellulase in Bacillus subtilis, Microbial Biotechnology 4, 98-105.
  4. Zhang, X.-Z., Zhang, Z., Zhu, Z., Sathitsuksanoh, N., Yang, Y., and Zhang, Y.-H. P. (2010) The non-cellulosomal family 48 cellobiohydrolase from Clostridium phytofermentans ISDg: heterologous expression, characterization, and processivity, Applied Microbiology and Biotechnology 86, 525-533.
  5. Zhang, X.-Z., and Zhang, Y.-H. P. (2010) One-step production of biocommodities from lignocellulosic biomass by recombinant cellulolytic Bacillus subtilis: Opportunities and challenges, Engineering in Life Sciences 10(5):398-406.
  6. Zhang, X.-Z., Sathitsuksanoh, N., and Zhang, Y.-H. P. (2010) Glycoside hydrolase family 9 processive endoglucanase from Clostridium phytofermentans: heterologous expression, characterization, and synergy with family 48 cellobiohydrolase, Bioresource Technology 101, 5534-5538.
  7. Liu, W., Zhang, X.-Z., Zhang, Z., and Zhang, Y.-H. P. (2010) Engineering of Clostridium phytofermentans endoglucanase Cel5A for improved thermostability, Appl. Environ. Microbiol. 76, 4914-4917.
  8. Zhang, X.-Z., Yan, X., Cui, Z. L., Hong, Q., and Li, S. P. (2006) mazF, a novel counter-selectable marker for unmarked chromosomal manipulation in Bacillus subtilis, Nucleic Acids Res 34, e71.
  9. Zhang, X.-Z., Cui, Z.-L., Hong, Q., and Li, S.-P. (2005) High-level expression and secretion of methyl parathion hydrolase in Bacillus subtilis WB800, Appl. Environ. Microbiol. 71, 4101-4103.
  10. Cui, Z.-L., Zhang, X.-Z., Zhang, Z.-H., and Li, S.-P. (2004) Construction and application of a promoter trapping vector with methyl parathion hydrolase gene mpd as the reporter, Biotechnology Letters 26, 1115-1118.