User:Ron Milo: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
[[Image:HomeP229.jpg|thumb|right|250px|Frame|]]
[[Image:HomeP229.jpg|thumb|right|250px|Frame|]]


'''I am a systems biology fellow at Harvard medical school.'''
'''Ron Milo - I am a systems biology fellow at Harvard medical school.'''





Revision as of 18:59, 29 August 2007

Ron Milo - I am a systems biology fellow at Harvard medical school.


e-mail: ron_milo@hms.harvard.edu

phone: 617-953-3247


Research interests:


How physiological adaptations affect evolutionary adaptations

A central issue in understanding natural selection is the relationship between physiological adaptations and evolutionary adaptations. Though extensively discussed in qualitative terms, quantitative analysis has been lacking. Under the guidance of Marc Kirschner and Michael Brenner I am studying this relationship using hemoglobin as a model system, relying on extensive experimental data measured for various organisms and under varying conditions. In a related effort I am trying to experimentally map the adaptive environment-fitness landscape and its evolutionary dynamics using experimental evolution with e. coli.

Dynamic proteomics

I am interested in studying the dynamics of protein levels at the single cell level. This promises to give us a deeper understanding into biological processes. In a research effort with Alex Sigal and other members of the Alon group at the Weizmann Institute I developed an experimental tool for dynamic proteomics in individual living human cells. This method enabled us to measure the variability and temporal memory in thousands of cells for several dozen proteins. Our approach uses a fluorescently tagged library under endogenous regulation analyzed using time lapse microscopy and custom written image analysis tools.

Network motifs - building blocks of complex networks

To understand biological networks, together with Uri Alon and members of his lab, we have defined "network motifs": interaction patterns that appear in a network much more than expected in random. Network motifs help in finding functional building blocks of complex networks. Network motifs have been found to perform information processing tasks by studying their temporal dynamics in microorganisms. The approach was used to classify networks into superfamilies.

Plant and environmental systems biology

I want to harness the tools and approaches employed in systems biology to bear on the grand challenges of sustainability. I am studying the efficiency of photosynthesis, trying to gain insight about the constraints that shape its properties and the limitations on the maximal productivity in plants and other photosynthetic organisms. In the process of studying plants I developed a tool for the automatic measurement of hypocotyls (stems) and roots – HypocoTool.

BioNumbers database

This is a collaborative effort to establish a database of useful biological numbers such as the number of ribosomes in the cell, the volume of the nucleus, the rate of translation and transcription and many many other useful but too often hard to find biological numbers. You can learn more about it and check out the current version at the BioNumbers database.

Top 20 places for short hikes in and around Boston

my recommendations


Selected Publications:

You can download any of the publications below and a CV at my Weizmann website

   - A. Sigal*, R. Milo*, A. Cohen*, N. Geva-Zatorsky, Y. Klein, Y. Liron, N. Rosenfeld, T. Danon, N. Pertzov & U. Alon,
     Variability and memory of protein levels in human cells.
     Nature 444(7119) 643-6 (2006). 
     * these authors contributed equally to this work
   - A. Sigal*, R. Milo*, A. Cohen, N. Geva-Zatorsky, Y. Klein, I. Alaluf, N. Swerdlin, N. Perzov, T. Danon, 
     Y. Liron, T. Raveh, A. E. Carpenter, G. Lahav & U. Alon,
     Dynamic proteomics in individual human cells uncovers widespread cell-cycle dependence of nuclear proteins.
     Nature Methods 3, 525 - 531 (2006).
     * these authors contributed equally to this work
   - R. Milo, S. Itzkovitz, N. Kashtan, R. Levitt, S. Shen-Orr, I. Ayzenshtat, M. Sheffer & U. Alon,
     Superfamilies of designed and evolved networks
     Science, 303:1538-42 (2004).
   - R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii & U. Alon,
     Network Motifs: Simple Building Blocks of Complex Networks
     Science, 298:824-827 (2002).
   - S. Shen-Orr, R. Milo, S. Mangan & U. Alon,
     Network motifs in the transcriptional regulation network of Escherichia coli
     Nature Genetics, 31:64-68 (2002).