# User:Timothee Flutre/Notebook/Postdoc/2011/11/07

Project name Main project page
Previous entry      Next entry

## Entry title

• customize the built-in heatmap in R (inspired from this):
```S <- 3  # nb of subgroups
V <- 7  # nb of observations
z <- matrix(c(0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,0,1,1,1,0,0), nrow=V, ncol=S, byrow=TRUE)

myheatmap <- function(z, out.file="") {
par(mar=c(4,5,3,2), font=2, font.axis=2, font.lab=2, cex=1.5, lwd=2)
if (out.file != "")
pdf(out.file)
layout(mat=cbind(1, 2), width=c(7,1))  # plot +  legend
mycol <- rev(heat.colors(4))
image(x=1:NCOL(z), y=1:NROW(z), z=t(z),
xlim=0.5+c(0,NCOL(z)), ylim=0.5+c(0,NROW(z)),
xlab="", ylab="Observations sorted by cluster", main="Custom heatmap",
axes=FALSE, col=mycol)
axis(1, 1:NCOL(z), labels=paste("subgroup", 1:NCOL(z)), tick=0)
par(mar=c(0,0,0,0))
plot.new()
legend("center", legend=sprintf("%.2f", seq(from=min(z), to=max(z), length.out=5)[-1]),
fill=mycol, border=mycol, bty="n")
if (out.file != "")
dev.off()
par(def.par)
}

myheatmap(mydata.sort)
```

• try KMLOCAL, yet another kmeans clustering program:
```wget http://www.cs.umd.edu/~mount/Projects/KMeans/kmlocal-1.7.2.tar.gz

cat test_kmlocal.config
show_assignments yes      # show final cluster assignments
validate yes              # validate assignments
dim 3                     # dimension
data_size 1000            # number of data points
seed 1859                 # random number seed
kcenters 4                # number of centers
max_tot_stage 20 0 0 0    # number of stages
seed 4                    # use different seed
run_kmeans swap           # run with this algorithm

kmltest -i test_kmlocal.config -o test_kmlocal.out
```

But it doesn't work on a big dataset (bad_alloc).