User:Timothee Flutre/Notebook/Postdoc/2012/08/16: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
(Autocreate 2012/08/16 Entry for User:Timothee_Flutre/Notebook/Postdoc)
 
(→‎Entry title: first version)
Line 6: Line 6:
| colspan="2"|
| colspan="2"|
<!-- ##### DO NOT edit above this line unless you know what you are doing. ##### -->
<!-- ##### DO NOT edit above this line unless you know what you are doing. ##### -->
==Entry title==
==Variational Bayes approach for the mixture of Normals==
* Insert content here...
 
* '''Motivation''': I have described on [http://openwetware.org/wiki/User:Timothee_Flutre/Notebook/Postdoc/2011/12/14 another page] the basics of mixture models and the EM algorithm in a frequentist context. It is worth reading before continuing. Here I am interested in the Bayesian approach as well as in a specific variational method (nicknamed "Variational Bayes").
 
 
* '''Data''': we have N univariate observations, <math>y_1, \ldots, y_N</math>, gathered into the vector <math>\mathbf{y}</math>.
 
 
* '''Assumptions''': we assume the observations to be exchangeable and distributed according to a mixture of K Normal distributions. The parameters of this model are the mixture weights (<math>w_k</math>), the means (<math>\mu_k</math>) and the precisions (<math>\tau_k</math>) of each mixture components, all gathered into <math>\Theta = \{w_1,\ldots,w_K,\mu_1,\ldots,\mu_K,\tau_1,\ldots,\tau_K\}</math>. There are two constraints: <math>\sum_{k=1}^K w_k = 1</math> and <math>\forall k \; w_k > 0</math>.
 
 
* '''Observed likelihood''': <math>p(\mathbf{y} | \Theta, K) = \prod_{n=1}^N p(y_n|\Theta,K) = \prod_{n=1}^N \sum_{k=1}^K w_k Normal(y_n;\mu_k,\tau_k)</math>
 
 
* '''Latent variables''': let's introduce N latent variables, <math>z_1,\ldots,z_N</math>, gathered into the vector <math>\mathbf{z}</math>. Each <math>z_n</math> is a vector of length K with a single 1 indicating the component to which the <math>n^{th}</math> observation belongs, and K-1 zeroes.
 
 
* '''Augmented likelihood''': <math>p(\mathbf{y},\mathbf{z}|\Theta,K) = \prod_{n=1}^N p(y_n,z_n|\Theta,K) = \prod_{n=1}^N p(z_n|\Theta,K) p(y_n|z_n,\Theta,K) = \prod_{n=1}^N \prod_{k=1}^K w_k^{z_{nk}} Normal(y_n;\mu_k,\tau_k)^{z_{nk}}</math>
 
 
* '''Priors''': we choose conjuguate ones
** for the parameters: <math>\forall k \; \mu_k \sim Normal(\mu_0,\tau_0)</math> and <math>\forall k \; \tau_k \sim Gamma(\alpha,\beta)</math>
** for the latent variables: <math>\forall n \; z_n \sim Multinomial_K(1,\mathbf{w})</math> and <math>\mathbf{w} \sim Dirichlet(\gamma)</math>





Revision as of 11:49, 16 August 2012

Project name <html><img src="/images/9/94/Report.png" border="0" /></html> Main project page
<html><img src="/images/c/c3/Resultset_previous.png" border="0" /></html>Previous entry<html>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</html>Next entry<html><img src="/images/5/5c/Resultset_next.png" border="0" /></html>

Variational Bayes approach for the mixture of Normals

  • Motivation: I have described on another page the basics of mixture models and the EM algorithm in a frequentist context. It is worth reading before continuing. Here I am interested in the Bayesian approach as well as in a specific variational method (nicknamed "Variational Bayes").


  • Data: we have N univariate observations, [math]\displaystyle{ y_1, \ldots, y_N }[/math], gathered into the vector [math]\displaystyle{ \mathbf{y} }[/math].


  • Assumptions: we assume the observations to be exchangeable and distributed according to a mixture of K Normal distributions. The parameters of this model are the mixture weights ([math]\displaystyle{ w_k }[/math]), the means ([math]\displaystyle{ \mu_k }[/math]) and the precisions ([math]\displaystyle{ \tau_k }[/math]) of each mixture components, all gathered into [math]\displaystyle{ \Theta = \{w_1,\ldots,w_K,\mu_1,\ldots,\mu_K,\tau_1,\ldots,\tau_K\} }[/math]. There are two constraints: [math]\displaystyle{ \sum_{k=1}^K w_k = 1 }[/math] and [math]\displaystyle{ \forall k \; w_k \gt 0 }[/math].


  • Observed likelihood: [math]\displaystyle{ p(\mathbf{y} | \Theta, K) = \prod_{n=1}^N p(y_n|\Theta,K) = \prod_{n=1}^N \sum_{k=1}^K w_k Normal(y_n;\mu_k,\tau_k) }[/math]


  • Latent variables: let's introduce N latent variables, [math]\displaystyle{ z_1,\ldots,z_N }[/math], gathered into the vector [math]\displaystyle{ \mathbf{z} }[/math]. Each [math]\displaystyle{ z_n }[/math] is a vector of length K with a single 1 indicating the component to which the [math]\displaystyle{ n^{th} }[/math] observation belongs, and K-1 zeroes.


  • Augmented likelihood: [math]\displaystyle{ p(\mathbf{y},\mathbf{z}|\Theta,K) = \prod_{n=1}^N p(y_n,z_n|\Theta,K) = \prod_{n=1}^N p(z_n|\Theta,K) p(y_n|z_n,\Theta,K) = \prod_{n=1}^N \prod_{k=1}^K w_k^{z_{nk}} Normal(y_n;\mu_k,\tau_k)^{z_{nk}} }[/math]


  • Priors: we choose conjuguate ones
    • for the parameters: [math]\displaystyle{ \forall k \; \mu_k \sim Normal(\mu_0,\tau_0) }[/math] and [math]\displaystyle{ \forall k \; \tau_k \sim Gamma(\alpha,\beta) }[/math]
    • for the latent variables: [math]\displaystyle{ \forall n \; z_n \sim Multinomial_K(1,\mathbf{w}) }[/math] and [math]\displaystyle{ \mathbf{w} \sim Dirichlet(\gamma) }[/math]