User:Tyler L. Faulkner/Notebook/Biology 210 at AU: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
No edit summary
Line 63: Line 63:
Pictures of our Serial Dilutions:
Pictures of our Serial Dilutions:


Figure 1: Serial Dilution 10^-3 + Tet
[[Image:Tyler Faulkner Serial Dilution 10^-3 + T.jpg]]
[[Image:Tyler Faulkner Serial Dilution 10^-3 + T.jpg]]
Figure 2: Serial Dilution 10^-5 + Tet
[[Image:Tyler Faulkner Serial 10^-5 + T.jpg]]
[[Image:Tyler Faulkner Serial 10^-5 + T.jpg]]
Figure 3: Serial Dilution 10^-7 + Tet
[[Image:Tyler Faulkner Serial 10^-7 + T.jpg]]
[[Image:Tyler Faulkner Serial 10^-7 + T.jpg]]
Figure 4: Serial Dilution 10^-9 + Tet
[[Image:Tyler Faulkner Serial 10^-9 + T.jpg]]
[[Image:Tyler Faulkner Serial 10^-9 + T.jpg]]
Figure 5: Serial Dilution 10^-3
[[Image:Tyler Faulkner Serial Dilution 10^-3.jpg]]
[[Image:Tyler Faulkner Serial Dilution 10^-3.jpg]]
Figure 6: Serial Dilution 10^-5
[[Image:Tyler Faulkner Serial Dilution 10^-5.jpg]]
[[Image:Tyler Faulkner Serial Dilution 10^-5.jpg]]
Figure 7: Serial Dilution 10^-7
[[Image:Tyler Faulkner Serial Dilution 10^-7.jpg]]
[[Image:Tyler Faulkner Serial Dilution 10^-7.jpg]]
Figure 8: Serial Dilution 10^-9
[[Image:Tyler Faulkner Serial Dilution 10^-9.jpg]]
[[Image:Tyler Faulkner Serial Dilution 10^-9.jpg]]


Line 91: Line 106:
|}
|}


Figure 1: 10^-3 + T
Figure 9: 10^-3 + Tet
[[Image:Tyler Faulkner Gram Stain 1.jpg]]
[[Image:Tyler Faulkner Gram Stain 1.jpg]]
At 10x Magnification
At 10x Magnification


Figure 2: 10^-5 + T
Figure 10: 10^-5 + Tet
[[Image:Tyler Faulkner Gram Stain 2.jpg]]
[[Image:Tyler Faulkner Gram Stain 2.jpg]]
At 10x Magnification
At 10x Magnification


Figure 3: 10^-3
Figure 11: 10^-3
[[Image:Tyler Faulkner Gram Stain 3.jpg]]
[[Image:Tyler Faulkner Gram Stain 3.jpg]]
At 10x Magnification
At 10x Magnification


Figure 4: 10^-7
Figure 12: 10^-7
[[Image:Tyler Faulkner Gram Stain 4.jpg]]
[[Image:Tyler Faulkner Gram Stain 4.jpg]]
At 10x Magnification
At 10x Magnification
Line 113: Line 128:




Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Fungi:
Figure 18: Fungus surround bean and corn
[[Image:IMG 0346.jpg]]
[[Image:IMG 0347.jpg]]


The Fungi sporangia are important in the fungi's survival and the way they reproduce. In the figure above is an example of fungi that reproduce by zygosporangia. The fungus looks almost cotton-like wrapped around the bean. It is white and fuzzy with small black specs.   





Revision as of 19:06, 11 February 2016

Tetracycline is an antibiotic first discovered in 1940 to treat different types of bacterial infections. Tetracycline has revealed that it can inhibit growth of microorganisms, including those that are either gram-positive or gram-negative, including chlamydiae, mycoplasmas, rickettsiae, and protozoan parasites (Chopra & Roberts, 2001). However, although tetracycline is used to treat many different bacterial infections, it still has a resistance to many growing pathogenic bacteria. Many researchers have found that the increase in bacterial resistance is because new genes are created and code for energy-dependent efflux of tetracyclines (Chopra & Roberts, 2001). Since many pathogens are now resistant to tetracycline, researches are now trying to find other ways to treat infectious and noninfectious diseases.



Hay Infusion Culture:

Our transect is the garden at the northwest side of campus near the tennis courts. Many of the vegetation there now is dead or has weeds growing in their planters. However, many of the planting boxes do have labels of what type of crop is grown there. For example, some that we saw was lettuce and cauliflower. Abiotic factors: sunlight, soil, water, temperature, moisture, wind Biotic factors: worms, birds, other organisms, weeds

When we opened up our Hay Infusion Culture, surprisingly our culture did not smell bad. In fact, it smelt like fresh soil and natural. At the bottom of our jar was the buildup of dirt and on top was the water. On the top layer, we did not notice any type of mold or green shoots, however there was an apparent thin layer on the top of our water.

Pictures of our Hay Infusion Culture:


After using our dichotomous key we discovered Colpidium was present on the bottom layer of our culture. It wasn't very big, and was actually only 50μm. The top layer also had a Colpidium and was 30μm. The Colpidium colpoda are ciliate protozoa, who are commonly found in freshwater environments. We assume that the Colpidium were found in our transect because it is a vegetable garden and with freshwater and soil. In the middle layer we found a Euglena, which was much larger than the Colpidium found in both the bottom and top layer. The Euglena measured 450μm. Euglena are flagellate protists and are very small and long. They are unique organisms because they are to some sorts a combination of both a plant and animal, which causes them to fall in between the Animal and Plant Kingdom. However, because of this very hard distinction, scientist have place them in the Protist Kingdom.


Serial dilution procedure:

After conducting our serial dilution we found that the plates with the tetracycline inhibited the growth of bacteria better than the plates without. When comparing the same dilution level between the agar plates with just nutrients and the ones with nutrients and tetracycline there is a huge difference between the amount of colonies that grew there. A majority of our colonies grown on the agar plates were the same shape on both the plates with and without the tetracycline.

Table 1: 100-fold Serial Dilutions Results

Dilution Agar Type # Colonies on Plate Conversion Factor Colonies/mL
10^-3 Nutrient 134 x10^3 134,000
10^-5 Nutrient 55 x10^5 5,500,000
10^-7 Nutrient 23 x10^7 230,000,000
10^-9 Nutrient 21 x10^9 21,000,000,000
10^-3 Nutrient + Tet 3 x10^3 3,000
10^-5 Nutrient + Tet 1 x10^5 100,000
10^-7 Nutrient + Tet 0 x10^7 0
10^-9 Nutrient + Tet 0 x10^9 0

Pictures of our Serial Dilutions:

Figure 1: Serial Dilution 10^-3 + Tet

Figure 2: Serial Dilution 10^-5 + Tet

Figure 3: Serial Dilution 10^-7 + Tet

Figure 4: Serial Dilution 10^-9 + Tet

Figure 5: Serial Dilution 10^-3

Figure 6: Serial Dilution 10^-5

Figure 7: Serial Dilution 10^-7

Figure 8: Serial Dilution 10^-9


Table 2: Bacteria Characterization

Colony Label Plate Type Colony Description Cell Description Gram + or Gram - Additional Notes
10^-3 Tetra Flat, White, Coccus, Smooth/Glistening Sarcina, Circular, Motile Gram + On this agar plate there were only 2 colonies found
10^-5 Tetra Flat, White with a tinge of yellow, Coccus, Smooth/Glistening Coccus, Circular, Motile Gram - On this agar plate there was only 1 colony found
10^-3 Milky White/Yellow/a few blue colonies, Punctiform/Flamentous colony, A majority of the colonies were smooth/Glistening, Some rough/slightly raised colonies Streptobaccilli, Very grouped together, Motile Gram + On this agar plate there were many different types of colonies that were grown. Some were spread out and others were very close and compact. At the top of the plate there was also what appeared to be a slight lawn forming.
10^-7 Beige/White, Blue, Circular colony, Flat, Smooth/Glistening Diplobacilli, Very close together, Motile Gram - On this agar plate there were a few different colonies grown. We found only one dark black/blue colony that also grew.

Figure 9: 10^-3 + Tet At 10x Magnification

Figure 10: 10^-5 + Tet At 10x Magnification

Figure 11: 10^-3 At 10x Magnification

Figure 12: 10^-7 At 10x Magnification


Many of the leaves we found were from small plants along the outside of our transect. I also assume that some leaves that we also found were possible from trees near our transect that flew in. We also had several types of weeds growing on the ground and in one area found some moss. We classified all the types of leaves we found to be dicots, but they all varied in size, shape, and color.

Table 3: Characteristics of Plants Collected from the Transect


Figure 13:

Figure 14:

Figure 15:

Figure 16:

Figure 17:


Fungi:

Figure 18: Fungus surround bean and corn

The Fungi sporangia are important in the fungi's survival and the way they reproduce. In the figure above is an example of fungi that reproduce by zygosporangia. The fungus looks almost cotton-like wrapped around the bean. It is white and fuzzy with small black specs.


References:

Chopra, Ian., & Roberts, Marilyn. "Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance". Microbiology and Molecular Biology Reviews 65.2. Jun. 2001. PMC. (4 Feb. 2016) <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC99026/>