User talk:Brett Thomas: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
Line 6: Line 6:
*'''The Model''' I was actually pretty confused by this model. These functions are some variant of ''Current Pop * constant factor''. Seems like a more appropriate general model is ''Current pop to the power of constant factor''. I just realized this a couple minutes ago, I'm sure I'll reconcile the difference before class.  
*'''The Model''' I was actually pretty confused by this model. These functions are some variant of ''Current Pop * constant factor''. Seems like a more appropriate general model is ''Current pop to the power of constant factor''. I just realized this a couple minutes ago, I'm sure I'll reconcile the difference before class.  
*'''Slide''' Without thinking, I copy/pasted Dr. Church's functions into excel as written. Then when I did the coding, I took it to mean linear growth with A2 representing the independent variable and A3 representing the output. This was dumb...and made the python coding like 10X harder too :)
*'''Slide''' Without thinking, I copy/pasted Dr. Church's functions into excel as written. Then when I did the coding, I took it to mean linear growth with A2 representing the independent variable and A3 representing the output. This was dumb...and made the python coding like 10X harder too :)
*'''Practicality''' When I actually understood what we were doing, I was able to analyze the biological component. In short: I really don't think exponential growth is a very practical model on either a population or evolutionary scale.
*'''Population''' It seems that there have to be thousands of feedback loops when analyzing growth in a population. In the rabbit example, the true growth was probably only exponential for a short time before food enforced a negative feedback. On the other hand, if the first rabbits crowded out competitors, would have caused a positive feedback. The more I think about such examples, the more I think that exponential growth is more a corner case than a model.
*'''Evolution''' Exponential growth makes even less sense to me when discussing evolutionary progress, because it seems evolution evolution of a species would "conquer" the lowest hanging fruit first. What I mean by this is that increases in brain size that were most effective probably came first, and then brain evolution would become subject to diminishing returns. If brain size is an indicator of progress, this would contradict the hypothesis from Slide 10: one has to be wrong..
*'''Evolution vs. Technology''' Since I'm skeptical of the exponential model of evoluton, the analogy to Moore's Law becomes more interesting. ''Why should evolutionary vs. technological innovation be different?'' I wish I had the time to give this more thought, and hope we can in class today. One idea is that the pressures are different: transistor technology is measured absolutely, whereas in evolution a relative advantage is probably more important than an absolute advantage. Another is that it is more difficult for evolution to adjust the fundamental building blocks of a species, while Intel can easily switch from silicon to a graphite transistors if they can be abstracted to the same old x86 standards.


== Personal/Lab Info ==  
== Personal/Lab Info ==  

Revision as of 11:59, 15 September 2009

Hello, Brett Thomas! This is a welcome message from OpenWetWare. By the way, we've announced you on the home page! You can leave messages to any OWW member by editing their User_talk pages like this one. And don't forget to personalize your User Page so that we can get to know you better! We've included some tips below to get you started.

Modeling Exponential Growth

I have some experience with python and excel, so the programming part of this asst wasn't very time consuming for me. I'm just going to throw out a few random notes:

  • The Model I was actually pretty confused by this model. These functions are some variant of Current Pop * constant factor. Seems like a more appropriate general model is Current pop to the power of constant factor. I just realized this a couple minutes ago, I'm sure I'll reconcile the difference before class.
  • Slide Without thinking, I copy/pasted Dr. Church's functions into excel as written. Then when I did the coding, I took it to mean linear growth with A2 representing the independent variable and A3 representing the output. This was dumb...and made the python coding like 10X harder too :)
  • Practicality When I actually understood what we were doing, I was able to analyze the biological component. In short: I really don't think exponential growth is a very practical model on either a population or evolutionary scale.
  • Population It seems that there have to be thousands of feedback loops when analyzing growth in a population. In the rabbit example, the true growth was probably only exponential for a short time before food enforced a negative feedback. On the other hand, if the first rabbits crowded out competitors, would have caused a positive feedback. The more I think about such examples, the more I think that exponential growth is more a corner case than a model.
  • Evolution Exponential growth makes even less sense to me when discussing evolutionary progress, because it seems evolution evolution of a species would "conquer" the lowest hanging fruit first. What I mean by this is that increases in brain size that were most effective probably came first, and then brain evolution would become subject to diminishing returns. If brain size is an indicator of progress, this would contradict the hypothesis from Slide 10: one has to be wrong..
  • Evolution vs. Technology Since I'm skeptical of the exponential model of evoluton, the analogy to Moore's Law becomes more interesting. Why should evolutionary vs. technological innovation be different? I wish I had the time to give this more thought, and hope we can in class today. One idea is that the pressures are different: transistor technology is measured absolutely, whereas in evolution a relative advantage is probably more important than an absolute advantage. Another is that it is more difficult for evolution to adjust the fundamental building blocks of a species, while Intel can easily switch from silicon to a graphite transistors if they can be abstracted to the same old x86 standards.

Personal/Lab Info

We have gone ahead and filled in some information you provided us in your membership application on your User Page. Please take a moment to embellish this and tell the community a little more about you. Put links to your lab pages, your projects and your interests. If you run out of ideas, take a look at some of the other User pages. For example, check out User:Julius_B._Lucks, User:Jason_R._Kelly and User:Reshma_P._Shetty.

You'll also notice that we have put an 'image' placeholder at the top of your User Page. We encourage you to upload an image of yourself to give OWW a more personal feel. To upload an image, click on the Upload file link on the left-hand side (toolbar). Choose a file from your computer, and remember the file name. After you have uploaded the image, you should see it loaded on its own page. Go back to your User Page, click on edit, and replace 'OWWEmblem.png' with the name of your file that you have uploaded in the second line of this page.