Physics307L:People/Carrillo/FormalRoughDraft

From OpenWetWare

Jump to: navigation, search

Contents

A Study on the Balmer Series of Hydrogen

SJK 06:20, 8 December 2010 (EST)
06:20, 8 December 2010 (EST)Good title and contact information.
06:20, 8 December 2010 (EST)
Good title and contact information.
Author: Cristhian Carrillo

Experimentalists: Cristhian Carrillo & Ginevra Cochran

Junior Lab, Department of Physics & Astronomy, University of New Mexico

Albuquerque, NM 87131

c28674@unm.edu


Abstract

SJK 06:23, 8 December 2010 (EST)
06:23, 8 December 2010 (EST)Your abstract is a little different format than usual but I like it.  You should add a sentence at the end saying whether or not you are consistent with accepted value and if not say that you'll discuss systematic error.  Also, you have too many digits on your value.  Leave it at 1.099
06:23, 8 December 2010 (EST)
Your abstract is a little different format than usual but I like it. You should add a sentence at the end saying whether or not you are consistent with accepted value and if not say that you'll discuss systematic error. Also, you have too many digits on your value. Leave it at 1.099
We present a study on the Balmer series of the Hydrogen atom. The objectives of this experiment are: (1) to study emission of light from a Hydrogen discharge source, (2) attempt to learn the empirical formulas to describe the pattern of spectral lines from Hydrogen, (3) to measrue the wavelengths of the Balmer Series of visible lines from hydrogen, and (4) to learn to analyze the wavelength data to determine the Rydberg constant using the Bohr model formulation. There are a total of six different series that describe the spectral line emissions of the Hydrogen atom. Due to the constraints of this lab, we were able to observe four wavelengths from the visible spectrum of light from Hydrogen. The four observable spectral lines are categorized by Red, Blue-Green, Violet, and Ultra Violet. Electrons transitioning to different levels of quantum energy levels emit photons and as a result, we see the different wavelengths that correspond to the emissions of the photons. The use of the spectrometer allowed us to observe and classify the spectra lines of the hydrogen atom. In order to measure the energies of the excited electrons through the emitted photons with wavelengths equivalent to the energy of the electrons, the Hydrogen atoms are excited to higher energies by electrical stimulation. It is possible to use these measurements to experimentally calculate Rydberg's constant, which is used in the Rydberg equation for Hydrogen.
\frac{1}{\lambda }=R(\frac{1}{2^2}-\frac{1}{n^2}), n=3,4,5,..\,\!

Our experimental value of the Rydberg constant was

R_{Hydrogen,average}\approx1.099\pm 0.008\times10^7 m^{-1}\,\!


We were pretty consistent with the accepted value obtaining less than a one percent error for both hydrogen and deuterium. Our error will be discussed in the results and methods section.

Introduction

The four visible lines of the hydrogen spectrum, described by the Balmer series and the Balmer-Rydberg equation, were first observed and characterized by Bohr using an assumption of quantized orbits in a classical physics argument [6]SJK 06:44, 8 December 2010 (EST)
06:44, 8 December 2010 (EST)Hey it is good you cited her on this.  To direct quote, you gotta use quotation marks.  However, in a formal report, you wouldn't direct quote on something like this.
06:44, 8 December 2010 (EST)
Hey it is good you cited her on this. To direct quote, you gotta use quotation marks. However, in a formal report, you wouldn't direct quote on something like this.
. Later the introduction and wide acceptance of the Balmer series allowed Neils Bohr to develop his quantum theory of atoms [6].


SJK 06:51, 8 December 2010 (EST)
06:51, 8 December 2010 (EST)Your introduction is pretty good.  The second paragraph, however, belongs before the end.  The way your first paragraph ends is good for the introduction.  But then the second paragraph is background information which should be at the beginning.
06:51, 8 December 2010 (EST)
Your introduction is pretty good. The second paragraph, however, belongs before the end. The way your first paragraph ends is good for the introduction. But then the second paragraph is background information which should be at the beginning.
The Rydberg constant is named after the Swedish physicist Johannes Rydberg. Throughout the history of the 20th-century, the hydrogen atom has had a central position in it, as it is the simplest of the atoms. Hydrogen has played a key role in testing fundamental theories, and hydrogen spectroscopy is associated with successive advances in the understanding of atomic structure [9]. Thanks to advances in spectroscopy such as laser spectroscopy, the accuracy of the Rydberg constant R_infinity has been improved by several orders of magnitude in three decades. During the last decade, there has been very little progress with the improvement of the R_infinity values given by the last two adjustments of the fundamental constants in 2002 and 2006 [4]. In this experiment, we attempt to describe our procedure and analysis of the theoretical and experimental data used to deduce R_infinity and see how our analysis compares to others.

Materials and Methods

SJK 22:14, 13 December 2010 (EST)
22:14, 13 December 2010 (EST)Methods section pretty good.  Make sure to give all figures titles and more description.  More description of the analysis methods.  As it is now, it's not easy to deduce what you did in the results section.
22:14, 13 December 2010 (EST)
Methods section pretty good. Make sure to give all figures titles and more description. More description of the analysis methods. As it is now, it's not easy to deduce what you did in the results section.
For this experiment we used a Constant Deviation Spectrometer, a Spectrum Tube Power Supply Model SP200, 5000 Volts, 10mA and mercury and hydrogen tubes. The mercury tube was used to calibrate our constant deviation spectrometer and will be discussed in the next subtitle "Calibration of the spectrometer using mercury."
Figure 1:  This is the entire setup with the power supply and mercury tube at the left and the constant-deviation spectrometer to the right
Figure 1: This is the entire setup with the power supply and mercury tube at the left and the constant-deviation spectrometer to the right
Figure 2:  The constant-deviation spectrometer slit
Figure 2: The constant-deviation spectrometer slit
Figure 3:
Figure 3:


Calibration of the spectrometer using mercury

For this lab, we followed Professor Gold's Manual for the setup. First, we put the mercury spectrum tube into the spectrum tube power supply and turned it on allowing the mercury tube to warm up for a few minutes (3-5 minutes). Figure 1 shows the whole setup for the experiment. Adusting the position of the ocular allowed us to focus the cross-hairs. We focused the slit using the large knob near the center of the apparatus. We then found a line of the mercury spectrum with the spectrometer slit wide (1/2 to 1mm). As we were trying to find lines from the spectrum we noticed that the narrower the slit was, the better it was to focus on the lines but we found that narrowing the slit caused loss of intensity of the light. We made sure to locate all the lines in the spectrum for mercury that we could possibly see, even though some lines were very hard to see (see figure 2)SJK 06:54, 8 December 2010 (EST)
06:54, 8 December 2010 (EST)I don't see the connection to figure 2?  Also, your figures need more detailed captions
06:54, 8 December 2010 (EST)
I don't see the connection to figure 2? Also, your figures need more detailed captions
. As we were turning the screw that rotates the prism, we made sure to record the position on the dial which corresponds to the mercury lines (see figure 3). To adjust our measurements, we used a linear fit in Google Docs and this completed the calibration part of constant-deviation spectrometer.

Measuring the Balmer spectrum of hydrogen

After we finished calibrating, we removed the mercury tube from the power supply and slotted the hydrogen tube into the power supply and let it warm up for about 3-5 minutes before we started taking data. We started from the very far left of the spectrum and moved the screw from left to right making sure that we did not move it to the left because this would give us a systematic error. We then measured five wavelengths for each of the four colors in the hydrogen spectrum. We repeated the same procedure for deuterium.


Results and Discussion

SJK 22:25, 13 December 2010 (EST)
22:25, 13 December 2010 (EST)This seems like a stream of numbers now, more than results and discussion.  You can turn it into a couple nice tables (maybe embedded Google spreadsheets).  Then add more text.  The tables should be numbered and have a title, just like figure captions.
22:25, 13 December 2010 (EST)
This seems like a stream of numbers now, more than results and discussion. You can turn it into a couple nice tables (maybe embedded Google spreadsheets). Then add more text. The tables should be numbered and have a title, just like figure captions.
We calculated the accepted value of Rydberg's constant from the following equation found on Professor Gold's Manual:
R=\frac{\mu e^4}{8\epsilon _0^2ch^3}\,\!
Where \mu\,\! is the reduced mass
R=1.0967758\times 10^7 m^{-1}\,\!


The following accepted values for the four visible wavelengths of the Balmer Series were taken from the hyperphysics website
n=6\rightarrow n=2\,\!
\lambda =410.174 nm\,\!
n=5\rightarrow n=2\,\!
\lambda =434.047 nm\,\!
n=4\rightarrow n=2\,\!
\lambda =486.133 nm\,\!
n=3\rightarrow n=2\,\!
\lambda =656.272 nm\,\!
Using the results from the data set 2 I calculated the values for the wavelengths. Please follow this link Image:Balmer calculations.xlsx to see the standard deviation and standard error of the mean for our data. The values below are what I calculated in the excel spread sheet.
n=6\rightarrow n=2\,\!
\lambda_{Hydrogen} =417.88 nm\,\!
\lambda_{Deuterium} =N/A\,\!
n=5\rightarrow n=2\,\!
\lambda_{Hydrogen} =433.66 nm\,\!
\lambda_{Deuterium} =433.7 nm\,\!
n=4\rightarrow n=2\,\!
\lambda_{Hydrogen} =483.44 nm\,\!
\lambda_{Deuterium} =483.17 nm\,\!
n=3\rightarrow n=2\,\!
\lambda_{Hydrogen} =644.19 nm\,\!
\lambda_{Deuterium} =642.07 nm\,\!
Using these values,I was able to calculate our measured Rydberg constant.
\frac{1}{\lambda }=R(\frac{1}{2^2}-\frac{1}{n^2}), n=3,4,5,6\,\!
R=\frac{4n^2}{\lambda(n^2-4)}\,\!


n=6\rightarrow n=2\,\!
R_{Hydrogen}\approx1.0768641\times10^7 m^{-1}\,\!


n=5\rightarrow n=2\,\!
R_{Hydrogen}\approx1.0980733\times10^7 m^{-1}\,\!
R_{Deuterium}\approx1.0979720\times10^7 m^{-1}\,\!
n=4\rightarrow n=2\,\!
R_{Hydrogen}\approx1.1032048\times10^7 m^{-1}\,\!
R_{Deuterium}\approx1.1038212\times10^7 m^{-1}\,\!


n=3\rightarrow n=2\,\!
R_{Hydrogen}\approx1.1176826\times10^7 m^{-1}\,\!
R_{Deuterium}\approx1.1213730\times10^7 m^{-1}\,\!


SJK 22:26, 13 December 2010 (EST)
22:26, 13 December 2010 (EST)There are too many digits on your values.  If the uncertainty is 0.008, then the value should be written 1.099 +/- 0.008
22:26, 13 December 2010 (EST)
There are too many digits on your values. If the uncertainty is 0.008, then the value should be written 1.099 +/- 0.008
Below are the average values of the Rydberg constant for Hydrogen and Deuterium.
R_{Hydrogen,average}\approx1.0989562\pm 0.008\times10^7 m^{-1}\,\!
R_{Deuterium,average}\approx1.1077221\pm 0.007\times10^7 m^{-1}\,\!
Below are the calculated percent errors.
\% error=\frac{R_{accepted}-R_{measured}}{R_{accepted}}
\% error_{Hydrogen}\approx0.20%\,\!
\% error_{Deuterium}\approx.998%\,\!

Conclusions

SJK 02:34, 14 December 2010 (EST)
02:34, 14 December 2010 (EST)These conclusions are good.  I am sure you will modify them a lot after retaking the data.
02:34, 14 December 2010 (EST)
These conclusions are good. I am sure you will modify them a lot after retaking the data.
We very happy with our results and our small error we obtained for the Rydberg constant's. Based on our small percentage error, I conclude that Ginny and I did the lab correctly and that we were able to see all the spectral lines for Hydrogen and Deuterium although we had the most error with the red spectral lines for both deuterium and hydrogen. I am still not sure why we had the most error with our data for the red spectral lines because the red spectral line was one of the easiest colors to see and so the trouble with seeing the line was not the problem. It may be the case that we did not calibrate the spectrometer properly. We did not calibrate more than once because we were able to take all of our measurements all in one day, therefore, we did not have to worry about the error due to different calibrations.
Perhaps using laser spectroscopy would have enhanced our data and we could have a obtained a smaller error for our calculations for the red spectral lines.

Acknowledgements

SJK 02:33, 14 December 2010 (EST)
02:33, 14 December 2010 (EST)Very good acknowledgements
02:33, 14 December 2010 (EST)
Very good acknowledgements
I would like to thank my lab partner Ginny for the great help this whole semester with the labs, it was a pleasure working with her. Professor Steve Koch and Katie Richardson made it all possible with helping us with many of the set ups with the equipment and circuits. I would also like to thank Peng for giving us some ideas on how to calibrate the spectrometer and Alex Andrego for the pictures and the good example for the formatting of the formal report. I want to give a special thanks to the Fall 2010 Junior Lab Students who helped us get started with some of our labs during the semester and gave us good ideas for our reports.

References

SJK 02:32, 14 December 2010 (EST)
02:32, 14 December 2010 (EST)Looks like excellent references!
02:32, 14 December 2010 (EST)
Looks like excellent references!
[1] 'Hydrogen Energies and Spectrum'. http://hyperphysics.phy-astr.gsu.edu/Hbase/hyde.html#c4
[2] Gold, Michael. The University of New Mexico Dept. of Physics and Astronomy PHYSICS 307L: 'Junior Laboratory Manual Fall 2006'. http://www-hep.phys.unm.edu/~gold/phys307L/manual.pdf
[3] Merikanto, 'File:Emission spectrum-H.png'. Wikepedia, May 2006 http://en.wikipedia.org/wiki/File:Emission_spectrum-H.png
[4] Banet, Leo, 'Evolution of the Balmer Series'. Am. J. Phys. 34, 496 (1966), DOI:10.1119/1.1973077 http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=AJPIAS000034000006000496000001&idtype=cvips&gifs=yes&ref=no
[5] Mohr, Peter J., Taylor, Barry N., and David B. Newell, 'CODATA recommended values of the fundamental physical constants: 2006'. Rev. Mod. Phys. 80, 633 (2008), DOI:10.1103/RevModPhys.80.633 http://physics.nist.gov/cuu/Constants/codata.pdf
[6] User:Alexandra S. Andrego/Notebook/Physics 307L/2009/09/28, 'Balmer Series'. http://www.openwetware.org/wiki/User:Alexandra_S._Andrego/Notebook/Physics_307L/2009/09/28
[7] Wood, R. W., 'An Extension of the Balmer Series of Hydrogen and Spectroscopic Phenomena of Very Long Vacuum Tubes'. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, Vol. 97, No. 687 (Aug. 3, 1920), pp. 455-470 http://www.jstor.org/stable/93837
[8] Rigden, John S., James O'Connell, and Reviewer, Am. J., 'Hydrogen: The Essential Element'. American Journal of Physics Phys. 71, 189 (2003), DOI:10.1119/1.1522705 http://scitation.aip.org.libproxy.unm.edu/getpdf/servlet/GetPDFServlet?filetype=pdf&id=AJPIAS000071000002000189000001&idtype=cvips&prog=normal
[9] Hänsch, T. W., M. H. Nayfeh, S. A. Lee, S. M. Curry, and I. S. Shahin,'Precision Measurement of the Rydberg Constant by Laser Saturation Spectroscopy of the Balmer α Line in Hydrogen and Deuterium'. Department of Physics, Stanford University, Stanford, California 94305. The American Physical Society, Vol 32, 1336-1338. 1974. DOI:10.1103/PhysRevLett.32.1336 http://link.aps.org/doi/10.1103/PhysRevLett.32.1336
[10] Andreae, T., W. König, R. Wynands, D. Leibfried, F. Schmidt-Kaler, C. Zimmermann, D. Meschede, and T. W. Hänsch, 'Absolute frequency measurement of the hydrogen 1S-2S transition and a new value of the Rydberg constant'. Max-Planck-Institut für Quantenoptik, W-8046 Garching, Germany. The American Physical Society, Vol 69, 1923-1926. 1992. DOI:10.1103/PhysRevLett.69.1923 http://link.aps.org/doi/10.1103/PhysRevLett.69.1923
[11] Laws, Edward. 'Mathematical Methods for Oceanographers: An Introduction'. John Wiley and Sons Inc. NY, New York. Ed 1, x. 1997. ISBN: 0-471-16221-3.
[12] Schawlow, Arthur L.. 'Spectroscopy in a New Light'. Department of Physics, Stanford University, Stanford, California 94305. The American Physical Society, Vol 54, 697-707. 1982. DOI: 10.1103/RevModPhys.54.697 http://link.aps.org/doi/10.1103/RevModPhys.54.697

General SJK Comment

Steve Koch 06:58, 8 December 2010 (EST): Please see Ginny's page for ideas for extra data: http://openwetware.org/wiki/User:Ginevra_Cochran/Formal_Report/Rough_Draft

Personal tools