User:Daniel Mietchen/Notebook/Evolutionary MRI/List of non-human brain MRI studies

From OpenWetWare
Jump to navigationJump to search

A (now largely outdated) list of papers tagged "EvoMRI" in my Papers database is at Media:Evomri-100208.bib.

Will continue to expand this list here but am looking into possibilities to make this listing more useful, particularly by embedding it into an encyclopedic context.

Primates

Structural MRI

  1. Newman JD, Kenkel WM, Aronoff EC, Bock NA, Zametkin MR, and Silva AC. A combined histological and MRI brain atlas of the common marmoset monkey, Callithrix jacchus. Brain Res Rev. 2009 Dec 11;62(1):1-18. DOI:10.1016/j.brainresrev.2009.09.001 | PubMed ID:19744521 | HubMed [Callithrix-jacchus]
  2. Aryan HE, Jandial R, Nakaji P, Greenberg MS, Janssen DL, Huang J, and Taylor WR. Lumbar diskectomy in a human-habituated mountain gorilla (Gorilla beringei beringei). Clin Neurol Neurosurg. 2006 Feb;108(2):205-10. DOI:10.1016/j.clineuro.2004.12.011 | PubMed ID:16412845 | HubMed [Gorilla-beringei-beringei-spine-not-brain]
  3. Sherwood CC, Cranfield MR, Mehlman PT, Lilly AA, Garbe JA, Whittier CA, Nutter FB, Rein TR, Bruner HJ, Holloway RL, Tang CY, Naidich TP, Delman BN, Steklis HD, Erwin JM, and Hof PR. Brain structure variation in great apes, with attention to the mountain gorilla (Gorilla beringei beringei). Am J Primatol. 2004 Jul;63(3):149-64. DOI:10.1002/ajp.20048 | PubMed ID:15258959 | HubMed [Gorilla-beringei-beringei]
  4. Nishimura T, Oishi T, Suzuki J, Matsuda K, and Takahashi T. Development of the supralaryngeal vocal tract in Japanese macaques: implications for the evolution of the descent of the larynx. Am J Phys Anthropol. 2008 Feb;135(2):182-94. DOI:10.1002/ajpa.20719 | PubMed ID:17960727 | HubMed [Macaca-fuscata]
  5. Knickmeyer RC, Styner M, Short SJ, Lubach GR, Kang C, Hamer R, Coe CL, and Gilmore JH. Maturational trajectories of cortical brain development through the pubertal transition: unique species and sex differences in the monkey revealed through structural magnetic resonance imaging. Cereb Cortex. 2010 May;20(5):1053-63. DOI:10.1093/cercor/bhp166 | PubMed ID:19703936 | HubMed [Macaca-mulatta]
  6. McLaren DG, Kosmatka KJ, Oakes TR, Kroenke CD, Kohama SG, Matochik JA, Ingram DK, and Johnson SC. A population-average MRI-based atlas collection of the rhesus macaque. Neuroimage. 2009 Mar 1;45(1):52-9. DOI:10.1016/j.neuroimage.2008.10.058 | PubMed ID:19059346 | HubMed [Macaca-mulatta1]
  7. Malkova L, Heuer E, and Saunders RC. Longitudinal magnetic resonance imaging study of rhesus monkey brain development. Eur J Neurosci. 2006 Dec;24(11):3204-12. DOI:10.1111/j.1460-9568.2006.05175.x | PubMed ID:17156381 | HubMed [Macaca-mulatta2]
  8. Short SJ, Lubach GR, Karasin AI, Olsen CW, Styner M, Knickmeyer RC, Gilmore JH, and Coe CL. Maternal influenza infection during pregnancy impacts postnatal brain development in the rhesus monkey. Biol Psychiatry. 2010 May 15;67(10):965-73. DOI:10.1016/j.biopsych.2009.11.026 | PubMed ID:20079486 | HubMed [Macaca]
  9. Rilling JK and Insel TR. Evolution of the cerebellum in primates: differences in relative volume among monkeys, apes and humans. Brain Behav Evol. 1998;52(6):308-14. DOI:10.1159/000006575 | PubMed ID:9807015 | HubMed [Multiple]
  10. Semendeferi K and Damasio H. The brain and its main anatomical subdivisions in living hominoids using magnetic resonance imaging. J Hum Evol. 2000 Feb;38(2):317-32. DOI:10.1006/jhev.1999.0381 | PubMed ID:10656781 | HubMed [Multiple1]
  11. Sherwood CC, Broadfield DC, Holloway RL, Gannon PJ, and Hof PR. Variability of Broca's area homologue in African great apes: implications for language evolution. Anat Rec A Discov Mol Cell Evol Biol. 2003 Apr;271(2):276-85. DOI:10.1002/ar.a.10046 | PubMed ID:12629670 | HubMed [Multiple2]
  12. Braun A. New findings on cortical anatomy and implications for investigating the evolution of language. Anat Rec A Discov Mol Cell Evol Biol. 2003 Apr;271(2):273-5. DOI:10.1002/ar.a.10051 | PubMed ID:12629669 | HubMed [Multiple3]

    Comment on Multiple2

  13. Kroenke CD, Bretthorst GL, Inder TE, and Neil JJ. Diffusion MR imaging characteristics of the developing primate brain. Neuroimage. 2005 May 1;25(4):1205-13. DOI:10.1016/j.neuroimage.2004.12.045 | PubMed ID:15850738 | HubMed [Multiple4-DTI]
  14. Semendeferi K, Damasio H, Frank R, and Van Hoesen GW. The evolution of the frontal lobes: a volumetric analysis based on three-dimensional reconstructions of magnetic resonance scans of human and ape brains. J Hum Evol. 1997 Apr;32(4):375-88. DOI:10.1006/jhev.1996.0099 | PubMed ID:9085187 | HubMed [Multiple5]

    "We scanned four living humans, four ape-brain specimens (Pan troglodytes, Gorilla gorilla, Pongo pygmaeus, Hylobates lar) and one brain specimen of a macaque (Macaca mulatta). [..] We also scanned one post-mortem human brain to control for possible effects of shrinkage in our comparison between living humans and post-mortem apes."

  15. Penin X, Berge C, and Baylac M. Ontogenetic study of the skull in modern humans and the common chimpanzees: neotenic hypothesis reconsidered with a tridimensional Procrustes analysis. Am J Phys Anthropol. 2002 May;118(1):50-62. DOI:10.1002/ajpa.10044 | PubMed ID:11953945 | HubMed [Pan-troglodytes]
  16. Kroenke CD, Bretthorst GL, Inder TE, and Neil JJ. Modeling water diffusion anisotropy within fixed newborn primate brain using Bayesian probability theory. Magn Reson Med. 2006 Jan;55(1):187-97. DOI:10.1002/mrm.20728 | PubMed ID:16342153 | HubMed [Papio-DTI]
  17. Rogers J, Kochunov P, Lancaster J, Shelledy W, Glahn D, Blangero J, and Fox P. Heritability of brain volume, surface area and shape: an MRI study in an extended pedigree of baboons. Hum Brain Mapp. 2007 Jun;28(6):576-83. DOI:10.1002/hbm.20407 | PubMed ID:17437285 | HubMed [Papio-hamadryas]
  18. Rogers J, Kochunov P, Zilles K, Shelledy W, Lancaster J, Thompson P, Duggirala R, Blangero J, Fox PT, and Glahn DC. On the genetic architecture of cortical folding and brain volume in primates. Neuroimage. 2010 Nov 15;53(3):1103-8. DOI:10.1016/j.neuroimage.2010.02.020 | PubMed ID:20176115 | HubMed [Papio-hamadryas-97-pedigreed-individuals]
  19. Kochunov P, Glahn DC, Fox PT, Lancaster JL, Saleem K, Shelledy W, Zilles K, Thompson PM, Coulon O, Mangin JF, Blangero J, and Rogers J. Genetics of primary cerebral gyrification: Heritability of length, depth and area of primary sulci in an extended pedigree of Papio baboons. Neuroimage. 2010 Nov 15;53(3):1126-34. DOI:10.1016/j.neuroimage.2009.12.045 | PubMed ID:20035879 | HubMed [Papio-hamadryas-180-pedigreed-individuals]
  20. Liu F, Garland M, Duan Y, Stark RI, Xu D, Dong Z, Bansal R, Peterson BS, and Kangarlu A. Study of the development of fetal baboon brain using magnetic resonance imaging at 3 Tesla. Neuroimage. 2008 Mar 1;40(1):148-59. DOI:10.1016/j.neuroimage.2007.11.021 | PubMed ID:18155925 | HubMed [Papio-papio-fetus]

    Same dataset as Papio-papio-fetus2

  21. Inder T, Neil J, Kroenke C, Dieni S, Yoder B, and Rees S. Investigation of cerebral development and injury in the prematurely born primate by magnetic resonance imaging and histopathology. Dev Neurosci. 2005 Mar-Aug;27(2-4):100-11. DOI:10.1159/000085981 | PubMed ID:16046843 | HubMed [Papio-papio-fetus1]
  22. Liu F, Garland M, Duan Y, Stark RI, Xu D, Bansal R, Dong Z, Peterson BS, and Kangarlu A. Techniques for in utero, longitudinal MRI of fetal brain development in baboons at 3T. Methods. 2010 Mar;50(3):147-56. DOI:10.1016/j.ymeth.2009.03.019 | PubMed ID:19358888 | HubMed [Papio-papio-fetus2]

    Same dataset as Papio-papio-fetus

  23. McBride T, Arnold SE, and Gur RC. A comparative volumetric analysis of the prefrontal cortex in human and baboon MRI. Brain Behav Evol. 1999 Sep;54(3):159-66. DOI:10.1159/000006620 | PubMed ID:10559553 | HubMed [Papio-papio-atlas]
  24. Greer PJ, Villemagne VL, Ruszkiewicz J, Graves AK, Meltzer CC, Mathis CA, and Price JC. MR atlas of the baboon brain for functional neuroimaging. Brain Res Bull. 2002 Aug 15;58(4):429-38. DOI:10.1016/s0361-9230(02)00810-9 | PubMed ID:12183022 | HubMed [Papio-papio-atlas1]
  25. Miot-Noirault E, Barantin L, Akoka S, and Le Pape A. T2 relaxation time as a marker of brain myelination: experimental MR study in two neonatal animal models. J Neurosci Methods. 1997 Mar;72(1):5-14. DOI:10.1016/s0165-0270(96)00148-3 | PubMed ID:9128162 | HubMed [Papio-papio+Canis-lupus-familiaris-Beagle]
  26. Black KJ, Snyder AZ, Koller JM, Gado MH, and Perlmutter JS. Template images for nonhuman primate neuroimaging: 1. Baboon. Neuroimage. 2001 Sep;14(3):736-43. DOI:10.1006/nimg.2001.0752 | PubMed ID:11506545 | HubMed [Papio-atlas]
  27. Chatfield J, Zhang L, Ramey J, Bowsher T, Loskutoff N, and O'Neill K. Resolution of a hyperprolactinemia in a western lowland gorilla (Gorilla gorilla gorilla). J Zoo Wildl Med. 2006 Dec;37(4):565-6. DOI:10.1638/06-050.1 | PubMed ID:17315448 | HubMed [Gorilla-gorilla-gorilla-pituitary]
  28. Kriegeskorte N, Mur M, Ruff DA, Kiani R, Bodurka J, Esteky H, Tanaka K, and Bandettini PA. Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron. 2008 Dec 26;60(6):1126-41. DOI:10.1016/j.neuron.2008.10.043 | PubMed ID:19109916 | HubMed [monkey]

    check Kiani therein

  29. Sawada K, Sun XZ, Fukunishi K, Kashima M, Sakata-Haga H, Tokado H, Aoki I, and Fukui Y. Developments of sulcal pattern and subcortical structures of the forebrain in cynomolgus monkey fetuses: 7-tesla magnetic resonance imaging provides high reproducibility of gross structural changes. Brain Struct Funct. 2009 Sep;213(4-5):469-80. DOI:10.1007/s00429-009-0204-x | PubMed ID:19214566 | HubMed [cynomolgus]

All Medline abstracts: PubMed | HubMed

Functional MRI

  1. Teichert T, Grinband J, Hirsch J, and Ferrera VP. Effects of heartbeat and respiration on macaque fMRI: implications for functional connectivity. Neuropsychologia. 2010 Jun;48(7):1886-94. DOI:10.1016/j.neuropsychologia.2009.11.026 | PubMed ID:19969009 | HubMed [Macaca-mulatta-fMRI]
  2. Margulies DS, Vincent JL, Kelly C, Lohmann G, Uddin LQ, Biswal BB, Villringer A, Castellanos FX, Milham MP, and Petrides M. Precuneus shares intrinsic functional architecture in humans and monkeys. Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):20069-74. DOI:10.1073/pnas.0905314106 | PubMed ID:19903877 | HubMed [Macaca-fMRI]

All Medline abstracts: PubMed | HubMed

Non-primates

Structural MRI

  1. Miot-Noirault E, Barantin L, Akoka S, and Le Pape A. T2 relaxation time as a marker of brain myelination: experimental MR study in two neonatal animal models. J Neurosci Methods. 1997 Mar;72(1):5-14. DOI:10.1016/s0165-0270(96)00148-3 | PubMed ID:9128162 | HubMed [Papio-papio+Canis-lupus-familiaris-Beagle]
  2. Poirier C, Vellema M, Verhoye M, Van Meir V, Wild JM, Balthazart J, and Van Der Linden A. A three-dimensional MRI atlas of the zebra finch brain in stereotaxic coordinates. Neuroimage. 2008 May 15;41(1):1-6. DOI:10.1016/j.neuroimage.2008.01.069 | PubMed ID:18358743 | HubMed [zebrafinch]
  3. Chanet B, Fusellier M, Baudet J, Madec S, and Guintard C. No need to open the jar: a comparative study of Magnetic Resonance Imaging results on fresh and alcohol preserved common carps (Cyprinus carpio (L. 1758), Cyprinidae, Teleostei). C R Biol. 2009 Apr;332(4):413-9. DOI:10.1016/j.crvi.2008.12.002 | PubMed ID:19304272 | HubMed [Cyprinus-carpio-fixed-in-alcohol]
  4. Hakeem AY, Hof PR, Sherwood CC, Switzer RC 3rd, Rasmussen LE, and Allman JM. Brain of the African elephant (Loxodonta africana): neuroanatomy from magnetic resonance images. Anat Rec A Discov Mol Cell Evol Biol. 2005 Nov;287(1):1117-27. DOI:10.1002/ar.a.20255 | PubMed ID:16216009 | HubMed [Elephant]
  5. Schmidt MJ, Pilatus U, Wigger A, Kramer M, and Oelschläger HA. Neuroanatomy of the calf brain as revealed by high-resolution magnetic resonance imaging. J Morphol. 2009 Jun;270(6):745-58. DOI:10.1002/jmor.10717 | PubMed ID:19123244 | HubMed [Bos-primigenius]

All Medline abstracts: PubMed | HubMed

Functional MRI

  1. Boumans T, Gobes SM, Poirier C, Theunissen FE, Vandersmissen L, Pintjens W, Verhoye M, Bolhuis JJ, and Van der Linden A. Functional MRI of auditory responses in the zebra finch forebrain reveals a hierarchical organisation based on signal strength but not selectivity. PLoS One. 2008 Sep 10;3(9):e3184. DOI:10.1371/journal.pone.0003184 | PubMed ID:18781203 | HubMed [zebrafinch-fMRI]
  2. Boumans T, Vignal C, Smolders A, Sijbers J, Verhoye M, Van Audekerke J, Mathevon N, and Van der Linden A. Functional magnetic resonance imaging in zebra finch discerns the neural substrate involved in segregation of conspecific song from background noise. J Neurophysiol. 2008 Feb;99(2):931-8. DOI:10.1152/jn.00483.2007 | PubMed ID:17881485 | HubMed [zebrafinch-fMRI1]
  3. Silva AC and Koretsky AP. Laminar specificity of functional MRI onset times during somatosensory stimulation in rat. Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):15182-7. DOI:10.1073/pnas.222561899 | PubMed ID:12407177 | HubMed [rat]

All Medline abstracts: PubMed | HubMed