CHE.496/2008: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
No edit summary
Line 13: Line 13:
<br />
<br />
<br />
<br />
Synthetic biology applies engineering principles such as standardization, modularity, abstraction and decoupling to biology, transforming it into a truly engineer-able science.  Complex, novel biological systems are engineered to solve industrial, medical and environmental engineering problems such as the bioremediation of toxic waste, the microbial production of the anti-malarial drug artemisinin, and the biosynthesis of hydrogen or butanol as an alternative fuel source.
Synthetic biology is emerging as a new engineering discipline by applying engineering principles to biology such as the standardization of modular components, abstraction of complex systems, and decoupling of fabrication from design.  Complex, novel biological systems are engineered to solve industrial, medical and environmental engineering problems such as the bioremediation of toxic waste, the microbial production of the anti-malarial drug artemisinin, and the biosynthesis of hydrogen or butanol as an alternative fuel source.
<br />
<br />
<br />
<br />

Revision as of 08:44, 10 July 2007

CHE.496: Biological Systems Design Seminar

Home        People        Schedule        Assignments        Responses        Projects        Links        Help       


Course Overview

This site is under development and this course is just a proposal at this point in time.

This course aims to introduce the methodologies of systems biology and the engineering principles of synthetic biology to science and engineering undergraduate students in order to equip them with the tools necessary to design and build a functional biological system and, in doing so, program novel cellular function and behavior to solve engineering problems and test biological hypotheses.

Synthetic biology is emerging as a new engineering discipline by applying engineering principles to biology such as the standardization of modular components, abstraction of complex systems, and decoupling of fabrication from design. Complex, novel biological systems are engineered to solve industrial, medical and environmental engineering problems such as the bioremediation of toxic waste, the microbial production of the anti-malarial drug artemisinin, and the biosynthesis of hydrogen or butanol as an alternative fuel source.

Course instructors: TBD
Meeting times: T, R

News

  • This course is not finalized.



Recent Updates

List of abbreviations:
N
This edit created a new page (also see list of new pages)
m
This is a minor edit
b
This edit was performed by a bot
(±123)
The page size changed by this number of bytes

28 May 2024

     14:43  (User creation log) [Yar‎ (3×)]
     
14:43 User account Patrickkaras talk contribs was created by Yar talk contribs and password was sent by email ‎
     
14:42 User account Zoyeford talk contribs was created by Yar talk contribs and password was sent by email ‎
     
14:42 User account Alessio Lampis talk contribs was created by Yar talk contribs and password was sent by email ‎

23 May 2024

22 May 2024

     08:51  Beauchamp:Publications diffhist 0 Michael S Beauchamp talk contribs
     07:58  The Paper that Launched Microfluidics - Xi Ning‎‎ 21 changes history 0 [Sarah L. Perry‎ (21×)]
     
07:58 (cur | prev) +3 Sarah L. Perry talk contribs (→‎References)
     
07:57 (cur | prev) −4 Sarah L. Perry talk contribs (→‎Leakage from inactive channels)
     
07:57 (cur | prev) −33 Sarah L. Perry talk contribs (→‎Sample dilution)
     
07:56 (cur | prev) +1 Sarah L. Perry talk contribs (→‎Sample dilution)
     
07:55 (cur | prev) +18 Sarah L. Perry talk contribs (→‎Sample dilution)
     
07:55 (cur | prev) +16 Sarah L. Perry talk contribs (→‎Separation and quantification)
     
07:54 (cur | prev) +28 Sarah L. Perry talk contribs (→‎Separation and quantification)
     
07:51 (cur | prev) +1 Sarah L. Perry talk contribs (→‎Electrokinetic effect)
     
07:50 (cur | prev) +1 Sarah L. Perry talk contribs (→‎Electrokinetic effect)
     
07:50 (cur | prev) +15 Sarah L. Perry talk contribs (→‎Electrokinetic effect)
     
07:49 (cur | prev) −2 Sarah L. Perry talk contribs (→‎Electrokinetic effect)
 m   
07:49 (cur | prev) +1 Sarah L. Perry talk contribs (→‎Electrokinetic effect)
     
07:49 (cur | prev) +51 Sarah L. Perry talk contribs (→‎Electrokinetic effect)
     
07:46 (cur | prev) −109 Sarah L. Perry talk contribs (→‎Device Fabrication)
     
07:44 (cur | prev) −10 Sarah L. Perry talk contribs (→‎Device Fabrication)
     
07:43 (cur | prev) +1 Sarah L. Perry talk contribs (→‎Significance)
     
07:43 (cur | prev) −16 Sarah L. Perry talk contribs (→‎Significance)
     
07:42 (cur | prev) −1 Sarah L. Perry talk contribs (→‎Significance)
     
07:40 (cur | prev) +38 Sarah L. Perry talk contribs (→‎Introduction)
 m   
07:37 (cur | prev) +2 Sarah L. Perry talk contribs (→‎Introduction)
 m   
07:36 (cur | prev) −1 Sarah L. Perry talk contribs (→‎Introduction)
     07:26  Multilayer Paper Microfluidics - Madyson Redder diffhist +51 Sarah L. Perry talk contribs (→‎Overview)
     07:13  Capillary Electrophoresis - Andrew Maloney, Tim Towner, Camryn Payne‎‎ 7 changes history −347 [Sarah L. Perry‎ (7×)]
     
07:13 (cur | prev) +112 Sarah L. Perry talk contribs
     
07:07 (cur | prev) −3 Sarah L. Perry talk contribs (→‎Background)
     
07:07 (cur | prev) 0 Sarah L. Perry talk contribs (→‎Background)
     
07:06 (cur | prev) +145 Sarah L. Perry talk contribs (→‎Background)
     
07:04 (cur | prev) −314 Sarah L. Perry talk contribs
     
06:42 (cur | prev) −198 Sarah L. Perry talk contribs (→‎References)
     
06:38 (cur | prev) −89 Sarah L. Perry talk contribs (→‎Background)

21 May 2024

     19:23  Microfluidic Vasculature for Cell Culture - Lilin Zhao, Melissa Deschamps, Marissa Burgess, Matthew Tiller, Jacob Kellett, Tina Leong, Katelyn Mullen, Daniel Bell, Anna Comperchio, Evelyn Moore‎‎ 13 changes history −6 [Sarah L. Perry‎ (13×)]
     
19:23 (cur | prev) −38 Sarah L. Perry talk contribs (→‎Applications for Understanding Tumor Metastasis)
     
19:21 (cur | prev) +15 Sarah L. Perry talk contribs (→‎Mimicking the Geometry of Blood Vessels)
     
19:20 (cur | prev) +11 Sarah L. Perry talk contribs (→‎Mimicking the Geometry of Blood Vessels)
 m   
19:19 (cur | prev) +2 Sarah L. Perry talk contribs (→‎Mimicking the Geometry of Blood Vessels)
     
19:18 (cur | prev) +4 Sarah L. Perry talk contribs (→‎Mimicking Geometry of Blood Vessels)
     
19:17 (cur | prev) +5 Sarah L. Perry talk contribs (→‎Introduction)
 m   
19:16 (cur | prev) +1 Sarah L. Perry talk contribs (→‎Introduction)
 m   
19:15 (cur | prev) −2 Sarah L. Perry talk contribs (→‎Introduction)
 m   
19:14 (cur | prev) −8 Sarah L. Perry talk contribs (→‎Introduction)
     
19:13 (cur | prev) +6 Sarah L. Perry talk contribs (→‎Introduction)
 m   
19:12 (cur | prev) −2 Sarah L. Perry talk contribs (→‎Introduction)
 m   
19:12 (cur | prev) −1 Sarah L. Perry talk contribs (→‎Introduction)
 m   
19:12 (cur | prev) +1 Sarah L. Perry talk contribs (→‎Introduction)