BIO254:Gprotein

From OpenWetWare
Jump to navigationJump to search
WIKIPEDIA BIO154/254: Molecular and Cellular Neurobiology

[Course Home]        Wiki Home        People        Materials        Schedule        Help       

Introduction

The term G protein refers to proteins that bind the nucleotide guanine as guanosine triphosphate (GTP) and guanosine diphosphate (GDP). There are two types of G proteins: heterotrimeric, or large, G proteins and small G proteins. Heterotrimeric G proteins are membrane-associated and, along with G protein-coupled receptors (GPCRs), function primarily in cell signalling and signal transduction. Small GTP-binding proteins function in diverse cellular processes including signal transduction, cytoskeletal reorganization, and vesicle trafficking. The small G protein superfamily includes the Ras family (signal transduction), the Rho/Rac family (cytoskeleton), the Rab and Sar1/Arf families (vescicle trafficking), and the Ran family (nuclear import/export) (Takai et al., 2001).

A molecular switch

G protein activity is dependent on whether it is binding GTP or GDP. This useful property has led to the appropriation of G proteins by many cellular processes to be used as "molecular switches". G proteins are generally thought to be "active" when binding GTP and "inactive" when binding GDP. The transition from the GTP-bound state to the GDP-bound state depends on the hydrolysis of GTP. This GTPase activity is either completely intrinsic to the G protein or is enhanced by another class of proteins, "GTPase activating proteins" (GAPs). The GDP to GTP transition requires the dissociation of GDP, so that GTP may again bind at the active site. Proteins that mediate this GDP dissociation are known as guanine nucleotide exchange factors (GEFs). Figure 1 schematizes the switch mechanism for the Rho protein.
Figure 1. Image taken from Luo, 2000.

Heterotrimeric G proteins are unique in that they exist as a complex (Gαβγ) in the GDP-bound state but dissociate (into Gα and Gβγ) upon the release of GDP/binding of GTP.

Heterotrimeric G protein families

Heterotrimeric G proteins have been divided into four families on the basis of sequence similarity: Gs, Gi, Gq, and G12/13. These four families have been shown to have different, but often overlapping, effects on the cell (see figure 3, Neves, 2002).
Figure 3. Image taken from Neves, 2002

The original GPCR cell signaling pathway described included Gs proteins. Gαs, among other things, activates adenylate cyclase. Gi pathways are characterized by the ability of Gαi to inhibit adenylate cyclase, and of Gβγ to activate its own downstream effectors, which include phosphatidylinositol 3-kinase (PI3K). The Gq pathway is activated by calcium-mobilizing hormones and acts through inositol trisphosphate (IP3), diacylglycerol (DAG), and protein kinase C (PKC). The G12/13 family is the most recently identified and the least well studied. It is not known as to what extent Gα12 and Gα13 act through distinct effectors (Neves, 2002).

G Protein-Coupled Receptors

Heterotrimeric G proteins associate with 7-transmembrane domain receptors called G protein-coupled receptors (GPCRs) at the cell membrane. There are as many as 865 GPCR-encoding genes in humans (Milligan, 2006). The association of the receptor with all three G protein subunits, Gα, Gβ, and Gγ, requires that GDP is bound to Gα. When the receptor protein is activated with the appropriate ligand, the ligand/receptor complex acts as a GEF, allowing the GDP to dissociate and GTP to bind. The G proteins then dissociate from the receptor and from each other, with only the β- and γ-subunits remaining bound to one another. Gβγ and Gα-GTP may then activate downstream effectors. Figure 2 is a schematic of this dissociation. Gα-GTP is shown activating adenylate cyclase, which produces cyclic adenosine monophosphate (cAMP). cAMP is an important second messenger.
Figure 2. Image modified from Firestein, 2001.

For more information on G protein-coupled receptors, see the GPCR wikipedia entry

The Rho/Rac family of small GTPases

The Rho family of small G proteins, which includes Rho, Rac, and CDC42, are important effectors that regulate actin dynamics. These proteins are of particular importance at the growth cone, where they mediate growth and collapse in response to chemoattractants and repellents. Axon guidance receptors are directly or indirectly coupled to Rho GEFs and GAPs, which regulate Rho activity. Figure 4 describes the relationship between Rho, Rac, CDC42, Rho GEF/GAPs, and actin (Huber, 2003).
Figure 4. Image taken from Huber, 2003

References

1. Takai Y, Sasaki T, Matozaki T. Small GTP-Binding Proteins. Physiol Rev. 81, 153-208 (2001).

2. Luo L. Rho GTPases in neuronal morphogenesis Nat Rev Neurosci. 1, 173-180 (2000).

3. Milligan G, Kostenis E. Heterotrimeric G-proteins: a short history. Br J Pharmacol. 147 Suppl 1:S46-55 (2006)

4. Firestein, S. How the olfactory system makes sense of scents. Nature 413, 211-218 (2001)

5. Neves S, Ram P, Iyengar R. G protein pathways. Science 296, 1636-1639 (2002)

6. Huber A, Kolodkin A, Ginty D, Cloutier JF. Signaling at the growth cone: ligand-receptor complexes and the control of axon growth and guidance. Ann Rv Neurosci 26, 509-63 (2003)

External Links

Recent updates to the site:

List of abbreviations:
N
This edit created a new page (also see list of new pages)
m
This is a minor edit
b
This edit was performed by a bot
(±123)
The page size changed by this number of bytes

26 April 2024

N    08:47  The Paper that Launched Microfluidics - Xi Ning‎‎ 2 changes history +16,815 [Xning098‎ (2×)]
     
08:47 (cur | prev) −1 Xning098 talk contribs (→‎Introduction)
N    
08:43 (cur | prev) +16,816 Xning098 talk contribs (Created page with "{{Template:CHEM-ENG590E}} ==Introduction== Microfluidics is the science and technology of systems that process or manipulate small (10 <sup> -18 </sup> to 10 <sup>−18 </sup> litres) amounts of fluids, using channels with dimensions of tens to hundreds of micrometres, as stated by George Whitesides. <sup> https://doi.org/10.1038/nature05058 1 </sup>. Microfluidic devices are microchemical systems such as labs on the chip, organs on the chip and plants on the chip....")
     08:43  CHEM-ENG590E:Wiki Textbook‎‎ 3 changes history 0 [Xning098‎ (3×)]
     
08:43 (cur | prev) 0 Xning098 talk contribs Tag: Manual revert
     
08:42 (cur | prev) 0 Xning098 talk contribs Tag: Manual revert
     
08:41 (cur | prev) 0 Xning098 talk contribs
     08:40  The paper that launched microfluidics - Xi Ning‎‎ 15 changes history +250 [Xning098‎ (15×)]
     
08:40 (cur | prev) +18 Xning098 talk contribs (→‎Significance)
     
08:36 (cur | prev) 0 Xning098 talk contribs (→‎Significance)
     
08:34 (cur | prev) +37 Xning098 talk contribs (→‎Significance)
     
08:31 (cur | prev) +3 Xning098 talk contribs (→‎Significance)
     
08:30 (cur | prev) +8 Xning098 talk contribs (→‎Significance)
     
08:28 (cur | prev) −31 Xning098 talk contribs (→‎Significance)
     
08:22 (cur | prev) −1 Xning098 talk contribs (→‎Electrokinetic effect)
     
08:21 (cur | prev) −2 Xning098 talk contribs (→‎Separation and quantification)
     
08:19 (cur | prev) 0 Xning098 talk contribs (→‎Sample dilution)
     
08:19 (cur | prev) 0 Xning098 talk contribs (→‎Sample dilution)
     
08:18 (cur | prev) 0 Xning098 talk contribs (→‎Separation and quantification)
     
08:17 (cur | prev) −1 Xning098 talk contribs (→‎Sample dilution)
     
08:17 (cur | prev) +1 Xning098 talk contribs
     
08:14 (cur | prev) 0 Xning098 talk contribs (→‎Microfluidic set-ups and its efficacy)
     
08:03 (cur | prev) +218 Xning098 talk contribs
     08:20  (Upload log) [Xning098‎ (6×)]
     
08:20 Xning098 talk contribs uploaded File:XiNingFigure2.jpeg
     
08:14 Xning098 talk contribs uploaded File:Figure4Drawn.XiNing.jpeg
     
08:00 Xning098 talk contribs uploaded File:DrawnFigure4XiNing.jpeg
     
07:38 Xning098 talk contribs uploaded File:XiNingDrawnSetup2.png
     
07:35 Xning098 talk contribs uploaded a new version of File:Figure 2 Set-up1.png
     
07:24 Xning098 talk contribs uploaded File:DrawnElectoosmoticflow.jpeg
     05:25  Ernesto-Perez-Rueda:Contact diffhist −94 Ernesto Perez-Rueda talk contribs

25 April 2024

     23:55  Flow and Pattern Asymmetries‎‎ 23 changes history +1,186 [Courtneychau‎ (23×)]
     
23:55 (cur | prev) −14 Courtneychau talk contribs (→‎Mixing on the Microfluidic Scale)
     
23:55 (cur | prev) −43 Courtneychau talk contribs (→‎Reynolds Number (Re))
     
23:55 (cur | prev) −46 Courtneychau talk contribs (→‎Péclet Number (Pe))
     
23:55 (cur | prev) −31 Courtneychau talk contribs (→‎Stokes Flow)
     
23:54 (cur | prev) −151 Courtneychau talk contribs (→‎Stokes Flow)
     
23:50 (cur | prev) +184 Courtneychau talk contribs (→‎References)
     
23:46 (cur | prev) 0 Courtneychau talk contribs (→‎Active Mixing Methods)
     
23:46 (cur | prev) +1 Courtneychau talk contribs (→‎Passive Mixing Methods)
     
23:45 (cur | prev) 0 Courtneychau talk contribs (→‎Chaotic Advection)
     
23:44 (cur | prev) 0 Courtneychau talk contribs (→‎Mixing on the Microfluidic Scale)
     
23:43 (cur | prev) +28 Courtneychau talk contribs (→‎Stokes Flow)
     
23:39 (cur | prev) +1 Courtneychau talk contribs (→‎Stokes Flow) Tag: Manual revert
     
23:38 (cur | prev) −1 Courtneychau talk contribs (→‎Stokes Flow)
     
23:37 (cur | prev) +11 Courtneychau talk contribs
     
23:36 (cur | prev) +15 Courtneychau talk contribs
     
23:33 (cur | prev) 0 Courtneychau talk contribs (→‎References)
     
23:30 (cur | prev) +3 Courtneychau talk contribs (→‎Passive Mixing Methods)
     
23:28 (cur | prev) −426 Courtneychau talk contribs
     
23:16 (cur | prev) +1,656 Courtneychau talk contribs (→‎References)
     
23:14 (cur | prev) 0 Courtneychau talk contribs (→‎Applications of Asymmetric Flow)
     
23:13 (cur | prev) 0 Courtneychau talk contribs (→‎Active Mixing Methods)
     
23:12 (cur | prev) −1 Courtneychau talk contribs (→‎Passive Mixing Methods)
     
23:11 (cur | prev) 0 Courtneychau talk contribs (→‎Microfluidic Mixers)