BIO254:Silent

From OpenWetWare
Jump to navigationJump to search
WIKIPEDIA BIO154/254: Molecular and Cellular Neurobiology

[Course Home]        Wiki Home        People        Materials        Schedule        Help       

Introduction

A silent synapse is a special type of excitatory glutamatergic synapse that relies on NMDA receptors to the exclusion of AMPA receptors. The voltage dependency of NMDA receptors causes them to act as logical AND gates, requiring both postsynaptic depolarization and glutamate binding to trigger an excitatory postsynaptic potential (EPSP).

The iGluR channel

Most excitatory synapses in the central nervous system are glutamatergic. In these synapses, glutamate released by the presynaptic cell acts on both metabotropic (mGluR) and ionotropic glutamate receptors (iGluR) in the postsynaptic membrane. Receptors in the iGluR channel can be classified as either NMDA (N-methyl-D-aspartate) or non-NMDA (kainate and AMPA).

Non-NMDA receptors contribute to the early phase of the excitatory postsynaptic current (EPSC) and generate peak current, whereas NMDA receptors contribute to the late phase as a slower component.

NMDA receptors (NMDAR)

NMDA receptors additionally require postsynaptic depolarization to eject a Mg^{2+} ion that blocks the channel during normal operation. As a result, the relative contribution of NMDA receptors to the EPSC depends on the postsynaptic membrane potential.

Also unlike AMPA receptors, open NMDA receptors permit the influx of Ca^{2+}, which plays a role in LTP (see below).

The inactivity of an NMDA-only synapse when the postsynaptic cell is polarized below -40 mV gives the ""silent synapse"" its name.

NMDA receptors are actively inhibited by APV (R-2-amino-5-phosphonopentanoate), which can thereby regulate ""silent synapse"" activity.

Long-term potentiation

Long-term potentiation (LTP) describes the process wherein the synaptic efficacy of two neurons is strengthened over time, in a way that depends on the simultaneity of firing (spike timing dependent plasticity). The best-studied form of this is hippocampal CA3-CA1 LTP, demonstrated by Timothy Bliss and Terje Lomo (1973). Brief high-frequency (tetanic) stimulation of a presynaptic cell can result in long-term enhancement of synaptic transmission. LTP additionally exhibits the following properties:

Cooperativity: The probability of inducing LTP increases with the number of stimulated afferents, and the strength of their stimulation. This reflects a postsynaptic depolarization threshold that must be exceeded in order to induce LTP.

Input specificity: LTP is restricted to the synapses that triggered the process, and does not propagate to nearby synapses.

Associativity: Weak stimulation on one pathway may be insufficient to induce LTP, though when coupled with strong stimulation on another, LTP can be induced on both pathways.

It was found that CA3-CA1 LTP requires both NMDAR and CA^{2+}. This involves the following steps: depolarization of the postsynaptic cell, activation of NMDA receptors in that cell, the resulting influx of Ca^{2+}, and the activation of messengers by Ca^{2+}.

The specific expression mechanisms of CA3-CA1 LTP are highly controversial. However, we do know that the expression of LTP is likely to involve both pre- and postsynaptic mechanisms, and that the probability of presynaptic neurotransmitter release is increased after LTP induction. At the postsynaptic cell, AMPA receptors are inserted into the cell membrane, which increases the conductance of the AMPA channel and thereby converts silent synapses into functional ones.

After the early phase of LTP (E-LTP) in which these pre- and post-synaptic changes occur, the late phase (L-LTP) can lead to the formation of new synapses.

Unlike CA3-CA1 LTP, mossy fiber LTP is not dependent on NMDAR, and may be expressed primarily by increased presynaptic neurotransmitter release.

Recent updates to the site

List of abbreviations:
N
This edit created a new page (also see list of new pages)
m
This is a minor edit
b
This edit was performed by a bot
(±123)
The page size changed by this number of bytes

25 April 2024

N    21:52  Flow and Pattern Asymmetries‎‎ 20 changes history +34,638 [Courtneychau‎ (20×)]
     
21:52 (cur | prev) +78 Courtneychau talk contribs (→‎Asymmetries in Microfluidics)
     
21:50 (cur | prev) +6 Courtneychau talk contribs (→‎Asymmetries in Microfluidics)
     
21:44 (cur | prev) −1 Courtneychau talk contribs (→‎Twists and Bends)
     
21:39 (cur | prev) 0 Courtneychau talk contribs (→‎Stokes Flow)
     
21:38 (cur | prev) +450 Courtneychau talk contribs
     
20:54 (cur | prev) −1,079 Courtneychau talk contribs
     
20:38 (cur | prev) −6 Courtneychau talk contribs (→‎Herringbone Mixer)
     
20:33 (cur | prev) +113 Courtneychau talk contribs (→‎Stokes Flow)
     
20:19 (cur | prev) 0 Courtneychau talk contribs (→‎Fundamentals of Mixing)
     
20:18 (cur | prev) −9 Courtneychau talk contribs (→‎Mixing on the Microfluidic Scale)
     
20:01 (cur | prev) −4 Courtneychau talk contribs (→‎Mixing on the Microfluidic Scale)
     
19:57 (cur | prev) −9 Courtneychau talk contribs (→‎Fundamentals of Mixing)
     
16:42 (cur | prev) −113 Courtneychau talk contribs (→‎Stokes Flow)
     
16:40 (cur | prev) 0 Courtneychau talk contribs (→‎Stokes Flow)
     
16:38 (cur | prev) +2,735 Courtneychau talk contribs (→‎Fundamentals of Mixing)
     
16:36 (cur | prev) +2,194 Courtneychau talk contribs
     
16:35 (cur | prev) +3,117 Courtneychau talk contribs (→‎Active Mixing Methods)
     
16:34 (cur | prev) +6,877 Courtneychau talk contribs (→‎Passive Mixing Methods)
     
16:34 (cur | prev) +55 Courtneychau talk contribs
N    
16:24 (cur | prev) +20,234 Courtneychau talk contribs (Created page with "{{Template:CHEM-ENG590E}} == Fundamentals of Mixing == Mixing can be described as a physical process through which two or more components are combined in a way such that a uniform distribution is achieved; it is a fundamental unit operation that is needed for a variety of applications. However, due to differences in macroscale and microscale flow phenomenon, mixing occurs differently, and hence, the design and implementation of mixers also differs greatly between the...")
     16:24  CHEM-ENG590E:Wiki Textbook‎‎ 8 changes history +111 [Courtneychau‎ (8×)]
     
16:24 (cur | prev) +44 Courtneychau talk contribs (→‎Chapter 4 - Flow Control and Mixing)
     
16:20 (cur | prev) +67 Courtneychau talk contribs (→‎Chapter 4 - Flow Control and Mixing)
     
16:14 (cur | prev) −36 Courtneychau talk contribs (Undo revision 1114660 by Courtneychau (talk)) Tag: Undo
     
16:14 (cur | prev) +27 Courtneychau talk contribs (Undo revision 1114661 by Courtneychau (talk)) Tag: Undo
     
16:14 (cur | prev) −27 Courtneychau talk contribs (Undo revision 1114662 by Courtneychau (talk)) Tag: Undo
     
16:13 (cur | prev) +27 Courtneychau talk contribs (Undo revision 1114661 by Courtneychau (talk)) Tag: Undo
     
16:11 (cur | prev) −27 Courtneychau talk contribs (→‎Chapter 4 - Flow Control and Mixing)
     
16:11 (cur | prev) +36 Courtneychau talk contribs (→‎Chapter 4 - Flow Control and Mixing)
     11:28  BioMicroCenter:Tecan Freedom Evo diffhist −35 Noelani Kamelamela talk contribs (→‎verrity Chemagic 360)
     11:27 Upload log Noelani Kamelamela talk contribs uploaded a new version of File:Chemagic360.jpg
     00:22  The paper that launched microfluidics - Xi Ning‎‎ 7 changes history +4,723 [Xning098‎ (7×)]
     
00:22 (cur | prev) −97 Xning098 talk contribs
     
00:18 (cur | prev) +14 Xning098 talk contribs (→‎Summary)
     
00:11 (cur | prev) +1 Xning098 talk contribs (→‎Introduction)
     
00:11 (cur | prev) +1 Xning098 talk contribs (→‎Introduction)
     
00:11 (cur | prev) 0 Xning098 talk contribs (→‎References)
     
00:08 (cur | prev) +4 Xning098 talk contribs (→‎Significance)
     
00:07 (cur | prev) +4,800 Xning098 talk contribs

24 April 2024

     22:50  WAKNA:Basics‎‎ 6 changes history +839 [Berthold Drexler‎ (6×)]
     
22:50 (cur | prev) +136 Berthold Drexler talk contribs (→‎Hier finden Sie Literatur für Einsteiger:innen in das Gebiet der Neuroanästhesie)
     
22:47 (cur | prev) +238 Berthold Drexler talk contribs (→‎Neuromonitoring allgemein)
     
22:33 (cur | prev) +151 Berthold Drexler talk contribs (→‎Hier finden Sie Literatur für Einsteiger:innen in das Gebiet der Neuroanästhesie)
     
22:31 (cur | prev) 0 Berthold Drexler talk contribs (→‎Grundlagen, Physiologie & Pharmakologie)
     
22:30 (cur | prev) +1 Berthold Drexler talk contribs (→‎Grundlagen, Physiologie & Pharmakologie)
     
22:30 (cur | prev) +313 Berthold Drexler talk contribs (→‎Grundlagen, Physiologie & Pharmakologie)
     18:35  User:Yanbin Huang‎‎ 2 changes history +25 [Yanbin Huang‎ (2×)]
     
18:35 (cur | prev) +13 Yanbin Huang talk contribs (→‎Peer-Reviewed Publications)
     
18:34 (cur | prev) +12 Yanbin Huang talk contribs (→‎Peer-Reviewed Publications)
     17:49  Hu‎‎ 2 changes history +28 [Hugangqing‎ (2×)]
     
17:49 (cur | prev) +18 Hugangqing talk contribs
     
17:48 (cur | prev) +10 Hugangqing talk contribs
     08:14  "Pick and Place" Assembly of Parts Using PDMS - Amy Lim, Rylie Costello‎‎ 3 changes history −14 [Rcostello‎ (3×)]
     
08:14 (cur | prev) +1 Rcostello talk contribs (→‎"Pick and Place" Methodology)
     
08:13 (cur | prev) −14 Rcostello talk contribs (→‎"Pick and Place" Methodology)
     
08:12 (cur | prev) −1 Rcostello talk contribs (→‎"Pick and Place" Methodology)