BioMicroCenter:News: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
Line 4: Line 4:
{|
{|
|rowspan=2 valign=top style="width:55%;padding-right:10px;"|  
|rowspan=2 valign=top style="width:55%;padding-right:10px;"|  
=== May 13, 2010 ===
In order to increase the space available for equipment in the BioMicro Center, we are doing a little more remodeling. Please note the following changes:
* The freezers have been relocated to the 304 hallway
* The RT-PCR machines will be moving to the 316 entry.
We hope this change will make accessing the [[BioMicroCenter:RTPCR|RT-PCR]] machines easier and will also create room for the [[http://openwetware.org/wiki/BioMicroCenter:Tecan_Freedom_Evo|new Tecan EVO 150]], scheduled to arrive in early June. Keep an eye on this page for future updates!


=== April 19, 2010 ===
=== April 19, 2010 ===

Revision as of 07:22, 12 May 2010

HOME -- SEQUENCING -- LIBRARY PREP -- HIGH-THROUGHPUT -- COMPUTING -- OTHER TECHNOLOGY


May 13, 2010

In order to increase the space available for equipment in the BioMicro Center, we are doing a little more remodeling. Please note the following changes:

  • The freezers have been relocated to the 304 hallway
  • The RT-PCR machines will be moving to the 316 entry.

We hope this change will make accessing the RT-PCR machines easier and will also create room for the [Tecan EVO 150], scheduled to arrive in early June. Keep an eye on this page for future updates!

April 19, 2010

Starting next month, the Koch Institute and the MIT BioMicro Center will be hosting a Nanostring nCounter system on a trial basis. The nCounter system is a single molecule visualizer that quantitatively detects RNA and other nucleic acids using a hybridization system in a highly multiplex manner. The system uses color-coded molecular barcodes to digitally count nucleic acid molecules in solution. The system does not use enzymes for detecting the nucleic acids, allowing direct measurements of mRNA from a variety of input materials including degraded RNA or crude cell lysates.

The instruments will be located in the BioMicro Center and will be available to all members of the MIT community. We will be using this time to gauge the level of interest in the nCounter and whether it would be a viable system to purchase.

If you are interested in learning more, we will be hosting a seminar with Nanostring representatives on April 30th. The seminar will be at 11am in 68-181. Nanostring representatives will be available after the talk to discuss the instruments and specific applications. More information is in the ABSTRACT for the talk.

April 1, 2010

Thanks to the generosity of a grant from the Moore Foundation to Dr. Penny Chisholm and ARRA funding to Dr. Chris Burge the BioMicro Center will be significantly expanding our sequencing capacity over the next 4-6 months. The first step of this expansion begins today with the addition of a new GAIIx and cBot from Illumina. We are working hard to get "Ryland" and "Agustus Gloop" up and running and we hope to be able to shorten our queue times very soon!

March 2010

Due to an increase in the cost of Illumina reagents, increase in data file size, and the complexity of sample preps, we have had to increase, slightly, the cost of Illumina sequencing. These new rates will be effective on samples submitted after April 1, 2010. Samples already in the queue will use the current rates.

ILLUMINA SEQUENCING MIT - current MIT - April 1, 2010 unit Notes
Single End (36nt) $805 $860 per lane inlcudes quality control (RT-PCR or BioAnalyzer), sequencing, genome alignment and data storage of Firecrest files for 2 yrs.
Paired End (36+36nt) $1,385 $1,450 per lane
Add'l 36nt $295 $300 per lane
Sample Multiplexing $0 $50 per 10 samples combined Combined over the whole order. Only applies to samples combined by BCM technicians.
Repriming $200 $300 per flow cell Uses 6nt. Cost is divided by number of lanes requiring repriming. Repriming is required for standard Illumina multiplexing.


Non-MIT rates are 30% higher for academic institutions and 50% highers for non-academic institutions. Priority is given to samples from CORE facilities.


RECENT & UPCOMING CHANGES

Illumina/Solexa Sequencing -- *New*
New Affymetrix labeling -- *New*
Notes from the ABRF
Tecan EVO high-throughput -- Training Feb 12, 2009
BioMicro Center Renovation -- Coming Feb '09


PREVIOUS NEWSLETTERS

2009
May
January / February
2008
December
November


RECENT CHANGES TO THE WEBSITE <\BIG><\B>

List of abbreviations:
N
This edit created a new page (also see list of new pages)
m
This is a minor edit
b
This edit was performed by a bot
(±123)
The page size changed by this number of bytes

26 April 2024

N    08:47  The Paper that Launched Microfluidics - Xi Ning‎‎ 2 changes history +16,815 [Xning098‎ (2×)]
     
08:47 (cur | prev) −1 Xning098 talk contribs (→‎Introduction)
N    
08:43 (cur | prev) +16,816 Xning098 talk contribs (Created page with "{{Template:CHEM-ENG590E}} ==Introduction== Microfluidics is the science and technology of systems that process or manipulate small (10 <sup> -18 </sup> to 10 <sup>−18 </sup> litres) amounts of fluids, using channels with dimensions of tens to hundreds of micrometres, as stated by George Whitesides. <sup> https://doi.org/10.1038/nature05058 1 </sup>. Microfluidic devices are microchemical systems such as labs on the chip, organs on the chip and plants on the chip....")
     08:43  CHEM-ENG590E:Wiki Textbook‎‎ 3 changes history 0 [Xning098‎ (3×)]
     
08:43 (cur | prev) 0 Xning098 talk contribs Tag: Manual revert
     
08:42 (cur | prev) 0 Xning098 talk contribs Tag: Manual revert
     
08:41 (cur | prev) 0 Xning098 talk contribs
     08:40  The paper that launched microfluidics - Xi Ning‎‎ 15 changes history +250 [Xning098‎ (15×)]
     
08:40 (cur | prev) +18 Xning098 talk contribs (→‎Significance)
     
08:36 (cur | prev) 0 Xning098 talk contribs (→‎Significance)
     
08:34 (cur | prev) +37 Xning098 talk contribs (→‎Significance)
     
08:31 (cur | prev) +3 Xning098 talk contribs (→‎Significance)
     
08:30 (cur | prev) +8 Xning098 talk contribs (→‎Significance)
     
08:28 (cur | prev) −31 Xning098 talk contribs (→‎Significance)
     
08:22 (cur | prev) −1 Xning098 talk contribs (→‎Electrokinetic effect)
     
08:21 (cur | prev) −2 Xning098 talk contribs (→‎Separation and quantification)
     
08:19 (cur | prev) 0 Xning098 talk contribs (→‎Sample dilution)
     
08:19 (cur | prev) 0 Xning098 talk contribs (→‎Sample dilution)
     
08:18 (cur | prev) 0 Xning098 talk contribs (→‎Separation and quantification)
     
08:17 (cur | prev) −1 Xning098 talk contribs (→‎Sample dilution)
     
08:17 (cur | prev) +1 Xning098 talk contribs
     
08:14 (cur | prev) 0 Xning098 talk contribs (→‎Microfluidic set-ups and its efficacy)
     
08:03 (cur | prev) +218 Xning098 talk contribs
     08:20  (Upload log) [Xning098‎ (6×)]
     
08:20 Xning098 talk contribs uploaded File:XiNingFigure2.jpeg
     
08:14 Xning098 talk contribs uploaded File:Figure4Drawn.XiNing.jpeg
     
08:00 Xning098 talk contribs uploaded File:DrawnFigure4XiNing.jpeg
     
07:38 Xning098 talk contribs uploaded File:XiNingDrawnSetup2.png
     
07:35 Xning098 talk contribs uploaded a new version of File:Figure 2 Set-up1.png
     
07:24 Xning098 talk contribs uploaded File:DrawnElectoosmoticflow.jpeg
     05:25  Ernesto-Perez-Rueda:Contact diffhist −94 Ernesto Perez-Rueda talk contribs

25 April 2024

     23:55  Flow and Pattern Asymmetries‎‎ 23 changes history +1,186 [Courtneychau‎ (23×)]
     
23:55 (cur | prev) −14 Courtneychau talk contribs (→‎Mixing on the Microfluidic Scale)
     
23:55 (cur | prev) −43 Courtneychau talk contribs (→‎Reynolds Number (Re))
     
23:55 (cur | prev) −46 Courtneychau talk contribs (→‎Péclet Number (Pe))
     
23:55 (cur | prev) −31 Courtneychau talk contribs (→‎Stokes Flow)
     
23:54 (cur | prev) −151 Courtneychau talk contribs (→‎Stokes Flow)
     
23:50 (cur | prev) +184 Courtneychau talk contribs (→‎References)
     
23:46 (cur | prev) 0 Courtneychau talk contribs (→‎Active Mixing Methods)
     
23:46 (cur | prev) +1 Courtneychau talk contribs (→‎Passive Mixing Methods)
     
23:45 (cur | prev) 0 Courtneychau talk contribs (→‎Chaotic Advection)
     
23:44 (cur | prev) 0 Courtneychau talk contribs (→‎Mixing on the Microfluidic Scale)
     
23:43 (cur | prev) +28 Courtneychau talk contribs (→‎Stokes Flow)
     
23:39 (cur | prev) +1 Courtneychau talk contribs (→‎Stokes Flow) Tag: Manual revert
     
23:38 (cur | prev) −1 Courtneychau talk contribs (→‎Stokes Flow)
     
23:37 (cur | prev) +11 Courtneychau talk contribs
     
23:36 (cur | prev) +15 Courtneychau talk contribs
     
23:33 (cur | prev) 0 Courtneychau talk contribs (→‎References)
     
23:30 (cur | prev) +3 Courtneychau talk contribs (→‎Passive Mixing Methods)
     
23:28 (cur | prev) −426 Courtneychau talk contribs
     
23:16 (cur | prev) +1,656 Courtneychau talk contribs (→‎References)
     
23:14 (cur | prev) 0 Courtneychau talk contribs (→‎Applications of Asymmetric Flow)
     
23:13 (cur | prev) 0 Courtneychau talk contribs (→‎Active Mixing Methods)
     
23:12 (cur | prev) −1 Courtneychau talk contribs (→‎Passive Mixing Methods)
     
23:11 (cur | prev) 0 Courtneychau talk contribs (→‎Microfluidic Mixers)