IC.Y3.AND.Gate.with.RiboJ:Dry Labs

From OpenWetWare
Jump to navigationJump to search

Home        Background        Team        Dry Labs        Wet Labs        Wet Lab Notebook        Dry Lab Tutorials       


Overview

GitHub

GitHub link

Differential equations

Simple Chain Reaction


[math]\displaystyle{ A \xrightarrow{k_{1}} B \xrightarrow{k_{2}} C }[/math]


[math]\displaystyle{ \begin{alignat}{2} \frac{d[A]}{dt} & = - k_{1}*[A] \\ \frac{d[B]}{dt} & = k_{1}*[A] -k_{2}*[B] \\ \frac{d[C]}{dt} & = k_{2}*[B] \end{alignat} }[/math]

Enzymatic Reaction

[math]\displaystyle{ E + S \begin{matrix} k_1 \\ \longrightarrow \\ \longleftarrow \\ k_{2} \end{matrix} ES \xrightarrow{k_{3}} E + P }[/math]

[math]\displaystyle{ \begin{alignat}{2} \frac{d[E]}{dt} & = k_{2}[ES] - k_{1}[E][S] + k_{3}[ES] \\ \frac{d[S]}{dt} & = k_{2}[ES] - k_{1}[E][S] \\ \frac{d[ES]}{dt} & = k_{1}[E][S] - k_{2}[ES] - k_{3}[ES] \\ \frac{d[P]}{dt} & = k_{3}[ES] \end{alignat} }[/math]

Constitutive Gene Expression


[math]\displaystyle{ Gene \xrightarrow{k_{1}} mRNA \xrightarrow{k_{2}} Protein }[/math]


[math]\displaystyle{ \begin{alignat}{1} \frac{d[mRNA]}{dt} & = k_{1} - d_{1}[mRNA] \\ \frac{d[Protein]}{dt} & = k_{2}[mRNA] - d_{2}[Protein] \\ \end{alignat} }[/math]

Simplified Constitutive Gene Expression


[math]\displaystyle{ Gene \xrightarrow{k_{1}} Protein }[/math]


[math]\displaystyle{ \begin{alignat}{2} \frac{d[Protein]}{dt} = s - d[Protein] \\ \end{alignat} }[/math]

Repressed Gene Expression


[math]\displaystyle{ \begin{align} & Repressor \\ & \bot \\ Gene &\rightarrow mRNA \rightarrow Protein \end{align} }[/math]


Hill function for transcriptional repression:

[math]\displaystyle{ \begin{align} \\ transcriptionRate=\frac{k_1.{K_m}^n}{{K_m}^n+R^n} \end{align} }[/math]


[math]\displaystyle{ k_1 }[/math]: maximal transcription rate


[math]\displaystyle{ K_m }[/math]: repression coefficient


[math]\displaystyle{ n }[/math]: Hill coefficient


R = [repressor]


[math]\displaystyle{ \begin{alignat}{1} \frac{d[mRNA]}{dt} & = \frac{k_{1}.{K_m}^n}{{K_m}^n+R^n} - d_{1}[mRNA] \\ \frac{d[Protein]}{dt} & = k_{2}[mRNA] - d_{2}[Protein] \\ \end{alignat} }[/math]

Activated Gene Expression


[math]\displaystyle{ \begin{align} & Activator \\ & \downarrow \\ Gene & \rightarrow mRNA \rightarrow Protein \end{align} }[/math]


Hill function for transcriptional activation:

[math]\displaystyle{ \begin{align} \\ transcriptionRate=\frac{k_1.{A}^n}{{K_m}^n+A^n} \end{align} }[/math]


[math]\displaystyle{ k_1 }[/math]: maximal transcription rate


[math]\displaystyle{ K_m }[/math]: activation coefficient


[math]\displaystyle{ n }[/math]: Hill coefficient


A=[activator]


[math]\displaystyle{ \begin{alignat}{1} \frac{d[mRNA]}{dt} & = \frac{k_{1}.A^n}{{K_m}^n+A^n} - d_{1}[mRNA] \\ \frac{d[Protein]}{dt} & = k_{2}[mRNA] - d_{2}[Protein] \\ \end{alignat} }[/math]

Repressilator


[math]\displaystyle{ \begin{alignat}{1} \frac{d[mRNA]_{i}}{dt} & = \frac{a}{1+{[Protein]_{j}}^n} - [mRNA]_{i} \\ \frac{d[Protein]_{i}}{dt} & = b[mRNA]_{i} - b[Protein]_{i} \\\\ \ i=1,2,3; \\ \ j=3,1,2; \\ \end{alignat} }[/math]


Toggle Switch


[math]\displaystyle{ \begin{alignat}{1} \frac{d[A]}{dt} & = \frac{\alpha}{1+[B]^4} - \gamma*[A] \\ \frac{d[B]}{dt} & = \frac{\beta}{1+[A]^4} - \gamma*[B] \end{alignat} }[/math]

Responses to various promoters


[math]\displaystyle{ \begin{alignat}{1} f([I]) & = \frac{\alpha+[I]^{n_i}}{[K_1]^{n_i}+[I]^{n_i}}*k \end{alignat} }[/math]


[math]\displaystyle{ [I] }[/math]: concentration of the inducer


[math]\displaystyle{ K_1 }[/math]: Hill constant


[math]\displaystyle{ n_i }[/math]: Hill coefficient


[math]\displaystyle{ k }[/math]: the maximum expression level due to induction


[math]\displaystyle{ \alpha }[/math]: constant relating to the basal level of the promoter due to leakage


AND gate


[math]\displaystyle{ \begin{alignat}{1} f([R], [S]) & = \frac{[G]}{[G]_{max}} & = \frac{{(\frac{[R]}{K_R})^{n_R}}*{(\frac{[S]}{K_S})^{n_S}}}{{(1+\frac{[R]}{K_R})^{n_R}}*{(1+\frac{[S]}{K_S})^{n_S}}} \end{alignat} }[/math]


[math]\displaystyle{ [R],[S] }[/math]: concentration of the activator proteins


[math]\displaystyle{ [G] }[/math]: output


[math]\displaystyle{ K_R,K_S }[/math]: Hill constants


[math]\displaystyle{ n_R, n_S }[/math]: Hill coefficients




Schedule

Week 1

Monday Tuesday Wednesday Thursday Friday
11:00am: Group Meeting 11:30am: Lab Induction 02:00pm: Tutorial 1
  • Derived and simulated mass action and
    enzymatic reactions from first principles

Week 2

Monday Tuesday Wednesday Thursday Friday
11:00am: Group Meeting 02:00pm: Tutorial 2
  • Derived and created standard models for constitutive
    gene expression
  • Derived and created standard models for activated
    and repressed gene expression

Week 3

Monday Tuesday Wednesday Thursday Friday
11:00am: Group Meeting 02:00pm: Tutorial 3
  • Derived and simulated a repressilator from first principles


Week 3

Monday Tuesday Wednesday Thursday Friday
11:00am: Group Meeting 02:00pm: Computational Modelling
  • Modelled Hill functions using parameters describing the
    best fits of the characterised promoter responses using
    different RBS found by Wang et al. 2011

Week 4

Monday Tuesday Wednesday Thursday Friday
11:00am: Group Meeting 02:00pm: Computational Modelling
  • Modelled transfer function describing biological AND gate
    for differing inducer concentrations

Computational Modelling

We replicated the best fits of the characterised promoter responses, using different RBSs, from the parameters described by Wang et al. in Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology, 2011.

Dose responses of Plac, Pbad and Plux using different RBSs

Using parameters KR =206.1±32.5, KS=3135±374, nR =2.381±0.475, and nS=1.835±0.286 we then replicated the output response of the AND gate for different inducer concentrations.

Output of engineered AND gate for different inducer concentrations