BIO254:Phototransduction

From OpenWetWare
Jump to navigationJump to search
WIKIPEDIA BIO154/254: Molecular and Cellular Neurobiology

[Course Home]        Wiki Home        People        Materials        Schedule        Help       


Definition

Phototransduction is the process through which photons, elementary particles of light, are converted into electrical signals. Visual phototransduction occurs in the retina through photoreceptors, cells that are sensitive to light.


Photoreceptor Cells

Two types of photoreceptors: rods and cones

There are two types of photoreceptors distributed unevenly across the retina: rods and cones. Rods are very sensitive cells specialized for night vision. In bright light conditions the response of the rods is saturated and cones, faster but less sensitive photoreceptors, mediate day vision. There are three types of cones, each one of them responding best to different wavelengths (short, middle, and long). Their combined responses generate color vision.

Opsin, the key molecule for phototransduction

Both rods and cones contain opsin, a G protein-coupled receptor. Opsin is bound to a light-absorbing chromophore, 11-cis-retinal (an aldehyde of vitamin A). Different types of opsins are involved in transducing light of different intensities and wavelengths. Rhodopsin is present in rods and transduces dim light while photopsins are present in cones cells and generate color vision.


Phototransduction step by step

In the absence of light, the photoreceptors are depolarized to a membrane resting potential of -40mV. Light will hyperpolarize the photoreceptors to -70mV (Figure 1). This is in contrast to most other neuronal types, which depolarize following excitation.

Figure 1: An intracellular recording from a single cone stimulated with different amounts of light. Each trace represents the response to a brief flash that was varied in intensity. At the highest light levels, the response amplitude saturates. (After Schnapf and Baylor, 1987.)

A key second messenger molecule responsible for maintaining a depolarized rest state in photoreceptors is the nucleotide cyclic guanosine 3’-5’ monophospate (cGMP). High cGMP levels keep cGMP-gated ion channels in the open state and allow them to pass an inward Na+ current.

Phototransduction involves three main biochemical events, outlined below for rhodopsin.

Light entering the eye activates the opsin molecules in the photoreceptors

Upon photon absorption, 11-cis-retinal undergoes an isomerization to the all-trans form, causing a conformational change in the rhodopsin. The activated rhodopsin is called metarhodopsin II.

The precursor for 11-cis-retinal is all-trans-retinol (vitamin A). A diet rich in vitamin A is crucial for vision, since vitamin A cannot be synthesized by humans.

Activated rhodopsin causes a reduction in the cGMP intracellular concentration

The cytoplasmic cGMP levels are controlled by cGMP phosphodiesterase, an enzyme that breaks down cGMP. In the dark, the activity of this enzyme is relatively week. When the photoreceptor is exposed to light, metarhodopsin II stimulates the activity of cGMP phosphodiesterase via transducin, a G protein. GDP-bound inactive transducin will exchange GDP for GTP following interaction with activated rhodopsin. GTP-bound active transducing will increase the activity of cGMP phosphodiesterase. The result is decreased levels of cGMP in the cytoplasm.

 

The photoreceptor is hyperpolarized following exposure to light

Decreased levels of cGMP cause the closing of cGMP-gated ion channels which will lead to membrane hyperpolarization.



Termination of the transduction cascade

The light response is terminated by two mechanisms. Transducin has GTPase activity and therefore it will inactivate itself by hydrolyzing bound GTP to GDP. The other shutoff mechanism involves phosphorylation of the activated rhodopsin by the opsin kinase. Phosphorylated rhodopsin will be inactivated by binding to arrestin.

Amplification in the visual cascade

The activation of a single rhodopsin by a single photon is sufficient to cause a significant change in the membrane conductance. This is possible due to amplification steps present in the transduction cascade.

A single photoactivated rhodopsin catalyses the activation of 500 transducin molecules. Each transducing can stimulate one cGMP phosphodiesterase molecule and each cGMP phosphodiesterase molecule can break down 10^3 molecules of cGMP per second. Therefore, a single activated rhodopsin can cause the hydrolysis of more than 10^5 molecules of cGMP per second.


References

Recent updates to the site:

List of abbreviations:
N
This edit created a new page (also see list of new pages)
m
This is a minor edit
b
This edit was performed by a bot
(±123)
The page size changed by this number of bytes

13 May 2024

     16:54 Upload log David Altman talk contribs uploaded File:Hornbeck WUbites Spring 2024.pdf
     16:54  Altman:WUbites diffhist +137 David Altman talk contribs (→‎WUbites)
     16:16  User:Massih Forootan‎‎ 2 changes history −73 [Massih Forootan‎ (2×)]
     
16:16 (cur | prev) +55 Massih Forootan talk contribs (→‎Professional Experience)
     
16:10 (cur | prev) −128 Massih Forootan talk contribs (→‎Link to Publications)
     13:39  Beauchamp:Publications‎‎ 3 changes history +123 [Michael S Beauchamp‎ (3×)]
     
13:39 (cur | prev) 0 Michael S Beauchamp talk contribs
     
13:39 (cur | prev) −6 Michael S Beauchamp talk contribs
     
13:33 (cur | prev) +129 Michael S Beauchamp talk contribs
     08:33  RAVE‎‎ 3 changes history +860 [Zhengjia‎ (3×)]
     
08:33 (cur | prev) +830 Zhengjia talk contribs
     
08:27 (cur | prev) +29 Zhengjia talk contribs
     
08:14 (cur | prev) +1 Zhengjia talk contribs
     06:12  Xu lab:Publications‎‎ 2 changes history +525 [Peisheng Xu‎ (2×)]
     
06:12 (cur | prev) +288 Peisheng Xu talk contribs
     
06:02 (cur | prev) +237 Peisheng Xu talk contribs

12 May 2024

11 May 2024

10 May 2024

     15:04  Karas Lab:Contact diffhist +76 Aclesage talk contribs
     15:02  Karas Lab diffhist +505 Aclesage talk contribs
     14:55  Beauchamp:iELVIS‎‎ 2 changes history 0 [Zhou.oliverfr‎ (2×)]
     
14:55 (cur | prev) −3 Zhou.oliverfr talk contribs Tag: Manual revert
     
14:55 (cur | prev) +3 Zhou.oliverfr talk contribs
     14:39  Altman:WUbites‎‎ 2 changes history +258 [David Altman‎ (2×)]
     
14:39 (cur | prev) 0 David Altman talk contribs
     
14:36 (cur | prev) +258 David Altman talk contribs (→‎WUbites)
     14:36 Upload log David Altman talk contribs uploaded File:Robbins WUbites Spring 2024.pdf
     13:19  UA Biophysics: Spectrofluorometer Instructions ESP diffhist −433 Elizabeth Suesca talk contribs
     10:23  Ernesto-Perez-Rueda:Publications diffhist +262 Ernesto Perez-Rueda talk contribs

9 May 2024

     18:42  Renhao Li Lab:Publications‎‎ 7 changes history +261 [Renhao Li‎ (7×)]
     
18:42 (cur | prev) +3 Renhao Li talk contribs (→‎2024)
     
18:42 (cur | prev) +14 Renhao Li talk contribs (→‎2024)
     
18:41 (cur | prev) +72 Renhao Li talk contribs (→‎2024)
     
18:30 (cur | prev) −2 Renhao Li talk contribs (→‎2024)
     
18:22 (cur | prev) 0 Renhao Li talk contribs (→‎2024)
     
18:21 (cur | prev) +173 Renhao Li talk contribs (→‎2024)
     
18:18 (cur | prev) +1 Renhao Li talk contribs (→‎2024)
     18:26  Renhao Li Lab:Lab Members diffhist −835 Renhao Li talk contribs (→‎Current Members)
     18:23  (Upload log) [Renhao Li‎; David Altman‎ (4×)]
     
18:23 Renhao Li talk contribs uploaded File:097vwfNbs abstract.png
     
15:24 David Altman talk contribs uploaded File:Martin WUbites Spring 2024.pdf
     
14:48 David Altman talk contribs uploaded File:CampiTalk.jpg
     
14:39 David Altman talk contribs uploaded File:JuniorPresentations.jpg
     
14:39 David Altman talk contribs uploaded File:SeniorPresentations.jpg
     17:38  Altman:WUbites‎‎ 4 changes history +160 [David Altman‎ (4×)]
     
17:38 (cur | prev) +13 David Altman talk contribs (→‎WUbites)
     
17:38 (cur | prev) +3 David Altman talk contribs (→‎WUbites)
     
17:37 (cur | prev) −9 David Altman talk contribs (→‎WUbites)
     
15:26 (cur | prev) +153 David Altman talk contribs (→‎WUbites)
     14:51  Altman:Pictures‎‎ 8 changes history +808 [David Altman‎ (8×)]
     
14:51 (cur | prev) +1 David Altman talk contribs
     
14:50 (cur | prev) +6 David Altman talk contribs
     
14:50 (cur | prev) −6 David Altman talk contribs
     
14:47 (cur | prev) +197 David Altman talk contribs
     
14:42 (cur | prev) +10 David Altman talk contribs
     
14:41 (cur | prev) −8 David Altman talk contribs
     
14:39 (cur | prev) +372 David Altman talk contribs
     
14:33 (cur | prev) +236 David Altman talk contribs