IGEM:Harvard/2006/DNA nanostructures

From OpenWetWare
Revision as of 11:52, 11 July 2006 by ShawnDouglas (talk | contribs)
Jump to navigationJump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


Project Overview

  • Our goal is to to design and implement molecular containers, which can be dynamically opened and closed by an external stimulus.
  • The containers will be implemented as DNA nanostructures, which afford a significant degree of positional control and chemical versatility.
  • As an initial proof-of-concept, we plan to use our DNA containers to demonstrate controllable activation ("delivery") of anti-thrombin aptamers.
  • We expect that molecular containers could have several interesting scientific and clinical applications, such as
    • Drug and gene delivery
    • Bio-marker scavenging (early detection of biomarkers)
    • Directed evolution (compartmentalized selections)
    • Using multiplexing for combinatorial chemical synthesis
    • Capture and stabilization of multiprotein complexes
    • Protein folding (chaperones)
    • Cell sorting

Container Specs

Container Designs

Latch Designs

Coding

Existing code

Thrombin-aptamer experiments

Questions / procedures

  • what percent gel? 10% to 20% polyacrylamide gels, no SDS (but would make for a good control)
  • what incubation conditions?
  • how much protein and DNA? protein at 1 μM, DNA at 2 μM
  • Coomassie stain

Experiments

number thrombin aptamer nanotube DNA-stained prediction protein-stained prediction
0 - - - no bands no bands
1 - - + slow band (nanotube) no bands
2 - + - fast band (aptamer) no bands
3 - + + slow band (aptamer-nanotube), traces of fast band (aptamer) no bands
4 + - - no bands fast band (thrombin)
5 + - + slow band (nanotube) fast band (thrombin)
6 + + - medium band (aptamer-thrombin), fast band (aptamer) medium band (aptamer-thrombin), traces of fast band (thrombin)
7 + + + very slow band (thrombin-aptamer-nanotube), slow band (aptamer-nantotube), traces of fast band (aptamer) very slow band (thrombin-aptamer-nanotube), medium band (aptamer-thrombin), traces of fast band (thrombin)

Buffers

  • Macaya's and Bock's selection buffer: 20 mM Tris-acetate, pH 7.4, 140 mM NaCl, 5 mM KCl, 1 mM CaCl2, 1 mM MgCl2
  • Liu's incubation buffer: 40 mM Tris, 20 mM CH3COOH, 2mM EDTA, 12.5 mM (CH3COO)2Mg, pH 8.0
  • Liu's PAGE buffer: 1x TAE/Mg2+

Protocols

Potential protocol for a 2 μL incubation reaction (revised with Dr. Shih's suggestions)

  • Reconsitute lyophilized bovine thrombindone
  • In a 0.2 mL PCR tube, mix:
    • 0.5 μL of 4x (not 5x) Bock's selection buffer
    • 1.0 μL of 2 μM aptamers (final concentration: 1.0 μM = 2 pmol)
    • 0.5 μL of 2 μM thrombin (final concentration: 0.5 μM = 1 pmol)
  • OR in a 0.2 mL PCR tube, mix:
    • 0.5 μL of 4x (not 5x) Bock's selection buffer
    • 0.5 μL of 2 μM aptamers (final concentration: 0.5 μM = 1 pmol)
    • 1.0 μL of 2 μM thrombin (final concentration: 1.0 μM = 2 pmol)
  • Alternative mix: Liu uses 10 pmol of DNA (1 μL of 10 μM) and varies thrombin amount from 2 pmol (1 μL of 0.2x thrombin working stock) to 100 pmol (1 μL of 10x thrombin working stock)
  • Incubate at room temperature for 30 min.
  • Load onto a non-denaturing polyacrylamide gel (10% to 20% gradient) at 4[[:Category:{{{1}}}|{{{1}}}]]
    • Liu runs at 25 mA for 48 h.

Matthewmeisel 11:11, 11 July 2006 (EDT)

Bibliography

  1. Schultze P, Macaya RF, and Feigon J. Three-dimensional solution structure of the thrombin-binding DNA aptamer d(GGTTGGTGTGGTTGG). J Mol Biol. 1994 Feb 4;235(5):1532-47. DOI:10.1006/jmbi.1994.1105 | PubMed ID:8107090 | HubMed [tha1]
  2. Liu Y, Lin C, Li H, and Yan H. Aptamer-directed self-assembly of protein arrays on a DNA nanostructure. Angew Chem Int Ed Engl. 2005 Jul 11;44(28):4333-8. DOI:10.1002/anie.200501089 | PubMed ID:15945116 | HubMed [tha2]
  3. Li WX, Kaplan AV, Grant GW, Toole JJ, and Leung LL. A novel nucleotide-based thrombin inhibitor inhibits clot-bound thrombin and reduces arterial platelet thrombus formation. Blood. 1994 Feb 1;83(3):677-82. PubMed ID:8298130 | HubMed [tha3]
  4. Bock LC, Griffin LC, Latham JA, Vermaas EH, and Toole JJ. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature. 1992 Feb 6;355(6360):564-6. DOI:10.1038/355564a0 | PubMed ID:1741036 | HubMed [tha4]
  5. Macaya RF, Schultze P, Smith FW, Roe JA, and Feigon J. Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3745-9. DOI:10.1073/pnas.90.8.3745 | PubMed ID:8475124 | HubMed [tha5]
All Medline abstracts: PubMed | HubMed

Presentations

Most recent (Week 3)

Week 2: Original proposal

Working Team Members