IGEM:IMPERIAL/2009: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
Line 25: Line 25:
*[[IGEM:IMPERIAL/2009/Feedback_&_Debriefs |Feedback & Debriefs]]<br>
*[[IGEM:IMPERIAL/2009/Feedback_&_Debriefs |Feedback & Debriefs]]<br>
*[[IGEM:IMPERIAL/2009/Past_Presentations| Past Presentations]]<br>
*[[IGEM:IMPERIAL/2009/Past_Presentations| Past Presentations]]<br>
**[[IGEM:IMPERIAL/2009/Past_Presentations/Journal_Clubs| Journal Clubs]]<br>
**[[IGEM:IMPERIAL/2009/Past_Presentations/Tutorials| Tutorials]]<br>
*[[IGEM:IMPERIAL/2009/Wet_Lab |Wet Lab]]<br>
*[[IGEM:IMPERIAL/2009/Wet_Lab |Wet Lab]]<br>
*[[IGEM:IMPERIAL/2009/Assays_Protocols |Assay Protocols and Cloning Strategies]]<br>
*[[IGEM:IMPERIAL/2009/Assays_Protocols |Assay Protocols and Cloning Strategies]]<br>

Revision as of 07:40, 6 August 2009

iGEM 2009 - Imperial College London Team

Work in progress ...

The E.ncapsulator

ToDo & Deadlines


Click on the bubble to expand so you can see all the text in each calendar entry <html><center><iframe src="http://www.google.com/calendar/embed?mode=WEEK&amp;showTitle=0&amp;showCalendars=0&amp;height=600&amp;wkst=2&amp;bgcolor=%23ffffff&amp;src=imperial.igem09%40googlemail.com&amp;color=%23A32929&amp;ctz=Europe%2FLondon" style=" border-width:0 " width="800" height="600" frameborder="0" scrolling="no"></iframe></center></html>

Useful Links


Team Roles

Change your role when applicable

Charles - Timer
Dave - Assays, cloning strategy/constructs
Dineka - BioBricks
James - Wet lab
Kun - Assays, constructs
Nuri - Modelling
Royah - Wet lab, In-Fusion cloning/SLIC (sequence and ligation independent cloning)
Tianyi - Modelling

Wiki Updates

List of abbreviations:
N
This edit created a new page (also see list of new pages)
m
This is a minor edit
b
This edit was performed by a bot
(±123)
The page size changed by this number of bytes

26 April 2024

N    08:47  The Paper that Launched Microfluidics - Xi Ning‎‎ 2 changes history +16,815 [Xning098‎ (2×)]
     
08:47 (cur | prev) −1 Xning098 talk contribs (→‎Introduction)
N    
08:43 (cur | prev) +16,816 Xning098 talk contribs (Created page with "{{Template:CHEM-ENG590E}} ==Introduction== Microfluidics is the science and technology of systems that process or manipulate small (10 <sup> -18 </sup> to 10 <sup>−18 </sup> litres) amounts of fluids, using channels with dimensions of tens to hundreds of micrometres, as stated by George Whitesides. <sup> https://doi.org/10.1038/nature05058 1 </sup>. Microfluidic devices are microchemical systems such as labs on the chip, organs on the chip and plants on the chip....")
     08:43  CHEM-ENG590E:Wiki Textbook‎‎ 3 changes history 0 [Xning098‎ (3×)]
     
08:43 (cur | prev) 0 Xning098 talk contribs Tag: Manual revert
     
08:42 (cur | prev) 0 Xning098 talk contribs Tag: Manual revert
     
08:41 (cur | prev) 0 Xning098 talk contribs
     08:40  The paper that launched microfluidics - Xi Ning‎‎ 15 changes history +250 [Xning098‎ (15×)]
     
08:40 (cur | prev) +18 Xning098 talk contribs (→‎Significance)
     
08:36 (cur | prev) 0 Xning098 talk contribs (→‎Significance)
     
08:34 (cur | prev) +37 Xning098 talk contribs (→‎Significance)
     
08:31 (cur | prev) +3 Xning098 talk contribs (→‎Significance)
     
08:30 (cur | prev) +8 Xning098 talk contribs (→‎Significance)
     
08:28 (cur | prev) −31 Xning098 talk contribs (→‎Significance)
     
08:22 (cur | prev) −1 Xning098 talk contribs (→‎Electrokinetic effect)
     
08:21 (cur | prev) −2 Xning098 talk contribs (→‎Separation and quantification)
     
08:19 (cur | prev) 0 Xning098 talk contribs (→‎Sample dilution)
     
08:19 (cur | prev) 0 Xning098 talk contribs (→‎Sample dilution)
     
08:18 (cur | prev) 0 Xning098 talk contribs (→‎Separation and quantification)
     
08:17 (cur | prev) −1 Xning098 talk contribs (→‎Sample dilution)
     
08:17 (cur | prev) +1 Xning098 talk contribs
     
08:14 (cur | prev) 0 Xning098 talk contribs (→‎Microfluidic set-ups and its efficacy)
     
08:03 (cur | prev) +218 Xning098 talk contribs
     08:20  (Upload log) [Xning098‎ (6×)]
     
08:20 Xning098 talk contribs uploaded File:XiNingFigure2.jpeg
     
08:14 Xning098 talk contribs uploaded File:Figure4Drawn.XiNing.jpeg
     
08:00 Xning098 talk contribs uploaded File:DrawnFigure4XiNing.jpeg
     
07:38 Xning098 talk contribs uploaded File:XiNingDrawnSetup2.png
     
07:35 Xning098 talk contribs uploaded a new version of File:Figure 2 Set-up1.png
     
07:24 Xning098 talk contribs uploaded File:DrawnElectoosmoticflow.jpeg
     05:25  Ernesto-Perez-Rueda:Contact diffhist −94 Ernesto Perez-Rueda talk contribs

25 April 2024

     23:55  Flow and Pattern Asymmetries‎‎ 23 changes history +1,186 [Courtneychau‎ (23×)]
     
23:55 (cur | prev) −14 Courtneychau talk contribs (→‎Mixing on the Microfluidic Scale)
     
23:55 (cur | prev) −43 Courtneychau talk contribs (→‎Reynolds Number (Re))
     
23:55 (cur | prev) −46 Courtneychau talk contribs (→‎Péclet Number (Pe))
     
23:55 (cur | prev) −31 Courtneychau talk contribs (→‎Stokes Flow)
     
23:54 (cur | prev) −151 Courtneychau talk contribs (→‎Stokes Flow)
     
23:50 (cur | prev) +184 Courtneychau talk contribs (→‎References)
     
23:46 (cur | prev) 0 Courtneychau talk contribs (→‎Active Mixing Methods)
     
23:46 (cur | prev) +1 Courtneychau talk contribs (→‎Passive Mixing Methods)
     
23:45 (cur | prev) 0 Courtneychau talk contribs (→‎Chaotic Advection)
     
23:44 (cur | prev) 0 Courtneychau talk contribs (→‎Mixing on the Microfluidic Scale)
     
23:43 (cur | prev) +28 Courtneychau talk contribs (→‎Stokes Flow)
     
23:39 (cur | prev) +1 Courtneychau talk contribs (→‎Stokes Flow) Tag: Manual revert
     
23:38 (cur | prev) −1 Courtneychau talk contribs (→‎Stokes Flow)
     
23:37 (cur | prev) +11 Courtneychau talk contribs
     
23:36 (cur | prev) +15 Courtneychau talk contribs
     
23:33 (cur | prev) 0 Courtneychau talk contribs (→‎References)
     
23:30 (cur | prev) +3 Courtneychau talk contribs (→‎Passive Mixing Methods)
     
23:28 (cur | prev) −426 Courtneychau talk contribs
     
23:16 (cur | prev) +1,656 Courtneychau talk contribs (→‎References)
     
23:14 (cur | prev) 0 Courtneychau talk contribs (→‎Applications of Asymmetric Flow)
     
23:13 (cur | prev) 0 Courtneychau talk contribs (→‎Active Mixing Methods)
     
23:12 (cur | prev) −1 Courtneychau talk contribs (→‎Passive Mixing Methods)
     
23:11 (cur | prev) 0 Courtneychau talk contribs (→‎Microfluidic Mixers)


Synthetic Biology @ Imperial

iGEM resources

Advisor Contributions

Schumann lab from Uni. Beyreuth, DE have done some interesting work on using spores to direct antigens to the gut - to act as vaccines. Sporulation guys might also be interested in this paper, describing the B. sub coat protein (and how it's hilariously complex but not all required). Oh, and subtilis spores will germinate in the gut (probably), justifying using the killswitch!

Killswitch guys, I think perhaps looking into recombinases as opposed to restriction enzymes would be useful as they won't act on host DNA. Xer and Dif sites will recombine with themselves in presence of the required enzyme, excising any genes between them - you could flank genes with them, then express the enzyme to chop your construct up. Sites are required to be within ≈5kb of each other, I think, so random ones on host DNA shouldn't be affected. It might take a while to work so look into the time; could be useful as a fallback, anyway.

Biobrick images you can use if you need (advisors like named/labelled circuit diagrams!):

~ Tom Adie 15:44, 20 July 2009 (EDT)

Killing guys, things to keep in mind for the restriction enzymes...

1. Restriction enzyme:

    • Cuts at short sequences; makes it easier to insert (see next point) and will cut in the genome and plasmid more often by chance
    • Restriction sites be inserted by codon changes; GeneArt optimise constructs to remove restriction sites all the time, so putting them in should be OK
    • Is not native; if it's expressed somehow by the cell, it'll suicide on its own

2. Regulation of expression:

    • Needs to be near 100% off when off; even a low level of expression will destroy your cells long before any product is produced
    • You may want to look for a less-efficient enzyme so small leakage wouldn't be that bad; or an enzyme that is degraded relatively quickly
    • Bistable switch with no leakage might be good; or flippase regulation! My pet idea for the bioremediation project last year =P

You can also insert sites after the transcription terminators in all your genes to ensure full destruction of the construct, and maybe add your sites into normal bricks (terminators etc.) and put them up as variants.

~ Tom Adie 11:41, 23 July 2009 (EDT)


<html>

<!-- Start of StatCounter Code --> <script type="text/javascript"> var sc_project=4444613; var sc_invisible=1; var sc_partition=55; var sc_click_stat=1; var sc_security="fb1ae6cb"; </script>

<script type="text/javascript" src="http://www.statcounter.com/counter/counter.js"></script><noscript><div class="statcounter"><a title="blogger counter" href="http://www.statcounter.com/blogger/" target="_blank"><img class="statcounter" src="http://c.statcounter.com/4444613/0/fb1ae6cb/1/" alt="blogger counter" ></a></div></noscript> <!-- End of StatCounter Code --> </html>